Diferenças entre edições de "Teoria de Mie"

41 bytes adicionados ,  18h44min de 3 de novembro de 2008
sem resumo de edição
Em contraste à [[dispersão de Rayleigh]], a solução de Mie ao problema da dispersão é válida para todos as possíveis razões entre diâmetros e [[comprimento de onda|comprimentos de onda]], embora a técnica resulte em soma numérica infinita. Em sua formulação original assume-se um material [[homogêneo]], [[isotrópico]] e opticamente linear irradiado por uma infinita [[onda plana]]. Entretanto, soluções para esferas em camadas são também possíveis.
 
A teoria de Mie é muito importante em [[óptica]] [[meteorologia|meteorológica]], onde as razões diâmetros-comprimentos de onda da ordem da unidade e maiores são características de muitos problemas a respeito do embaçamento dispersão em [[nuvem|nuvens]]. Uma aplicação adicional está na caracterização de [[ciência do aerossol|partículas]] através das medidas ópticas da dispersão. A solução de Mie é igualmente importante para a compreensão da aparência de materiais comuns como [[leite]], [[tecido biológicoTecido|tecidos biológicos]] e pintura com [[látex]].
 
A teoria de Mie tem sido usada no tratamento físico e na detecção de concentrações de óleos em águas poluídas.
 
Uma moderna formulação da solução de Mie no problema da dispersão sobre uma esfera pode ser encontrada em [[J. A. Stratton]] (''Electromagnetic Theory'', New York: McGraw-Hill, 1941). Nesta formulação, a onda plana incidente asim como o campo de dispersão é expandido em [[vetorVector (geometriaespacial)|vetores]] de funções de onda de irradiação esférica. Ao estabelecer-se a [[condição de contorno]] na superfície esférica, os coeficientes da expansão do campo disperso podem ser computados. Um programa em [[FORTRAN]] para computar a solução de Mie para uma esfera e um cilindro infinito pode ser encontrado no livro de Bohren e e Huffman sobre dispersão de luz por partículas pequenas. Uma alternativa útil é fornecida por Mishchenko, Travis e Lacis em seu livro ''Scattering, Absorption, and Emission of Light by Small Particles'' (Dispersão, Absorção, e Emissão de Luz por Partículas Pequenas).
 
<!--
 
By enforcing the [[boundary condition]] on the spherical surface, the expansion coefficients of the scattered field can be computed. A [[FORTRAN]] program to compute the Mie solution for a sphere and an infinite cylinder can be found in the book by Bohren and Huffman on light scattering by small particles. A useful alternative is provided by Mishchenko, Travis and Lacis in their book Scattering, Absorption, and Emission of Light by Small Particles.
 
-->
 
{{Em tradução|data=Março de 2008}}
 
== Ver também ==
* M. Mishchenko, L. Travis, A. Lacis: ''Scattering, Absorption, and Emission of Light by Small Particles'', Cambridge University Press, 2002.
* J. Frisvad, N. Christensen, H. Jensen: ''Computing the Scattering Properties of Participating Media using Lorenz-Mie Theory'', SIGGRAPH 2007
 
 
 
{{esboço-física}}
14 813

edições