Discussão:Triângulo: diferenças entre revisões

2 709 bytes removidos ,  23 de novembro de 2008
arq
(arq)
{{AvançarDiscussão}}
{{destacado antigo|Triângulo|semana=30 de março|ano=2006}}
{{LinkArquivo|n=s}}
''Triângulos escalenos''
 
Em um triângulo escaleno, as medidas dos 3 lados são diferentes. Os ângulos internos de um triângulo escaleno também possuem medidas diferentes.
 
== Um triângulo é um poligono ==
 
Fatos elementares sobre triângulos foram apresentados por Euclides nos livros 1-4 de sua obra Elementos aproximadamente em 300 a.C..
 
Um triângulo é um polígono.
 
Dois triângulos são ditos semelhantes se um pode ser obtido pela expansão uniforme do outro. Este é o caso se, e somente se, seus ângulos correspondentes são iguais, e isso ocorre, por exemplo, quando dois triângulos compartilham um ângulo e os lados opostos a esse ângulo. O fato crucial sobre triângulos similares é que os comprimentos de seus lados são proporcionais. Isto é, se o maior lado de um triângulo é duas vezes o maior lado do triângulo similar, diz-se, então, que o menor lado será também duas vezes maior que o menor lado do outro triângulo, e o comprimento do lado médio será duas vezes o valor do lado correspondente do outro triângulo. Assim, a razão do maior lado e o menor lado do primeiro triângulo será a mesma razão do maior lado e o menor lado do outro triângulo.
 
Usando-se triângulos retângulos e o conceito de similaridade, as funções trigonométricas de seno e cosseno podem ser definidas. Essas são funções de um ângulo que são investigadas na trigonometria.
 
Nos casos a seguir, será usado um triângulo com vértices A, B e C, ângulos α, β e γ e lados a, b e c. O lado a é oposto ao vértice A e ao ângulo α, o lado b é oposto ao vértice B e ao ângulo β e o lado c é oposto ao vértice C e ao ângulo γ.
 
Triângulo com vértices, lados e ângulos representadosNa geometria Euclidiana, de acordo com o Teorema angular de Tales, a soma dos ângulos internos de qualquer triângulo é igual a dois ângulos retos (180° ou π radianos). Isso permite a determinação da medida do terceiro ângulo, desde que sejam conhecidas as medidas dos outros dois ângulos.
 
Ex:
 
== No plano,triângulo... ==
 
No plano, triângulo é a figura geométrica que ocupa o espaço interno limitado por três linhas retas que concorrem, duas a duas, em três pontos diferentes formando três lados e três ângulos internos que somam 180°. Também se pode definir um triângulo em superfícies gerais. Nesse casos, são chamados de triângulos geodésicos e têm propriedades diferentes.
 
O triângulo é o único polígono que não possui diagonais e cada um de seus ângulos externos é suplementar do ângulo interno adjacente. O perímetro de um triângulo é a soma das medidas dos seus lados. Denomina-se a região interna de um triângulo de região convexa e a região externa de região côncava.
90 379

edições