Equação catalítica de Brønsted: diferenças entre revisões

Conteúdo apagado Conteúdo adicionado
Maicon iq (discussão | contribs)
Pesteves (discussão | contribs)
Linha 3:
As [[correlações lineares de energia livre]] demonstram a interdependência entre a constante de velocidade ou equilíbrio com algum parâmetro estrutural, e são aplicadas com êxito, para um grande número de reações químicas. Um exemplo destas correlações é a equação catalítica desenvolvida por [[Johannes Nicolaus Brønsted]] que fornece a relação entre a força de um ácido e a atividade catalítica. O gráfico do logaritmo da constante de reação (k) versus o logaritmo da constante de ionização (K<sub>a</sub>) para uma série de ácidos (por exemplo, um grupo de fenóis substituídos ou ácidos carboxílicos) oferece uma linha reta com uma inclinação (a) e uma constante (b){{Ref|CAREY}}.
 
<math>log(k) = a* × log(K_a) + b</math>
 
A equação de Brønsted dá informações sobre um mecanismo de reação. Esta relação implica que a energia livre de Gibbs para a dissociação do próton é proporcional à energia de ativação para a etapa catalítica. Quando a relação não é linear, a catálise não ocorrerá através do mesmo mecanismo reação. Reações cuja inclinação (a) seja pequena são consideradas com o estado de transição que se assemelha com o reagente, com pouca transferência de prótons. Já com uma inclinação acentuada, a transferência de prótons no estado de transição está quase concluída {{Ref|Schubert}}.
Linha 75:
[[File:Bronsted.TIF|Bronsted]]
 
Os detalhes da transferência de prótons podem ser provados através d técnicas como o efeito isotópico de solventes. Comparando as taxas de reação em H<sub>2</sub>O versus D<sub>2</sub>O, o efeito isotópico pode ser normal ou inverso, dependendo da natureza do mecanismo da transferência de prótons. D<sub>3</sub>O<sup>+</sup> é um ácido mais forte que H<sub>3</sub>O<sup>+</sup> , com resultado disto, reagentes em solução de D<sub>2</sub>O são um pouco mais protonados que em H<sub>2</sub>O. Reações que envolvem equilíbrios rápidos de protonação ocorrerão mais rapidamente em D<sub>2</sub>O do que em H2OH<sub>2</sub>O. Já se a transferência de prótons é a etapa controladora da velocidade de reação então a reação será mais rápida em H<sub>2</sub>O do que em D<sub>2</sub>O, devido ao efeito isotópico primário {{Ref|SMITH}}.
 
A relação de Brønsted é muitas vezes chamado de lei catalítica de Brønsted. Embora justificável em termos históricos, este nome não é recomendado, pois as relações de Brønsted são conhecidos por aplicar a muitas reações não-catalisadacatalisadas e pseudo-catalisadocatalisadas. O termo Relação pseudo-Brønsted é usado às vezes para as reações que envolvem catálise nucleofílica em vez de catálise ácido-base {{Ref|IUPAC}}.
 
Vários tipos de parâmetros de Brønsted têm sido propostos e utilizados nos ultimos anos tais como os trabalhos feitos por Shidmoossavee e colaboradores {{Ref|Shidmoossavee}} intitulado ''Brønsted Analysis of an Enzyme-Catalyzed Pseudo-Deglycosylation Reaction: Mechanism of Desialylation in Sialidases'' e por Logadottir e colaboradores {{Ref|Logadottir}} ''The Brønsted–Evans–Polanyi Relation and the Volcano Plot for Ammonia Synthesis over Transition Metal Catalysts''.