Dispositivo semicondutor: diferenças entre revisões

sem resumo de edição
Dispositivos semicondutores são manufaturados tanto em dispositivos únicos disccretos como em ''[[Circuito integrado|circuitos integrados]]'' (CIs), os quais consistem de um número variando de uns poucos (tão baixo quanto dois) a bilhões de dispositivos fabricados e interconectados sobre um substrato semicondutor único.
 
TheA mainprincipal reasonrazão whyporque semiconductormateriais materialssemicondutores aresão sotão usefulúteis isé thatque theo behaviorcomportamento ofde a semiconductorum cansemicondutor bepode easilyser manipulatedfacilmente bymanipulado thepela additionadição ofde impuritiesimpurezas, knowno asque é conhecido como "dopagem (a adição de um "[[DopingDopante (Semiconductorsquímica)|dopingdopante]]"). SemiconductorA [[electricalcondutividade conductivityelétrica|conductivitycondutividade]] cande besemicondutores controlledpode byser introductioncontrolada ofpela anintrodução electricde fieldum campo elétrico, bypela exposureexposição toà [[lightluz]], ande eventambém pressurepressão ande heatcalor; thusentão, semiconductorssemicondutores canpodem makeproduzir excellentexcelentes sensorssensores. CurrentA conductioncondução inde acorrente [[semiconductor]]em occursum viasemicondutor mobileocorre orvia "free" ''[[electronselétron]]''s andmóveis ou "livres" e ''[[Electron holeElectrão-buraco|holesburacos electrónicos]]'', collectivelycoletivamente knownconhecidos ascomo ''[[chargePortador carrierde carga|portadores de carga]]s''. <!-- Doping a semiconductor such as [[silicon]] with a small amount of impurity atoms, such as [[phosphorus]] or [[boron]], greatly increases the number of free electrons or holes within the semiconductor. When a doped semiconductor contains excess holes it is called "[[P-type semiconductor|p-type]]", and when it contains excess free electrons it is known as "[[N-type semiconductor|n-type]]", where ''p'' (positive for [[electron hole|holes]]) or ''n'' (negative for [[electron]]s) is the sign of the charge of the majority mobile charge carriers. The semiconductor material used in devices is doped under highly controlled conditions in a fabrication facility, or ''[[Fab (semiconductors)|fab]]'', to precisely control the location and concentration of p- and n-type dopants. The junctions which form where n-type and p-type semiconductors join together are called [[p-n junction]]s.
<!--
 
The main reason why semiconductor materials are so useful is that the behavior of a semiconductor can be easily manipulated by the addition of impurities, known as [[Doping (Semiconductors)|doping]]. Semiconductor [[electrical conductivity|conductivity]] can be controlled by introduction of an electric field, by exposure to [[light]], and even pressure and heat; thus, semiconductors can make excellent sensors. Current conduction in a [[semiconductor]] occurs via mobile or "free" ''[[electrons]]'' and ''[[Electron hole|holes]]'', collectively known as ''[[charge carrier]]s''. Doping a semiconductor such as [[silicon]] with a small amount of impurity atoms, such as [[phosphorus]] or [[boron]], greatly increases the number of free electrons or holes within the semiconductor. When a doped semiconductor contains excess holes it is called "[[P-type semiconductor|p-type]]", and when it contains excess free electrons it is known as "[[N-type semiconductor|n-type]]", where ''p'' (positive for [[electron hole|holes]]) or ''n'' (negative for [[electron]]s) is the sign of the charge of the majority mobile charge carriers. The semiconductor material used in devices is doped under highly controlled conditions in a fabrication facility, or ''[[Fab (semiconductors)|fab]]'', to precisely control the location and concentration of p- and n-type dopants. The junctions which form where n-type and p-type semiconductors join together are called [[p-n junction]]s.
 
-->