Diferenças entre edições de "Charitum Montes"

30 bytes adicionados ,  08h33min de 31 de julho de 2014
{{Commonscat|Charitum Montes}}
m (Bot: A migrar 3 interwikis, agora providenciados por Wikidata em d:Q3299733)
({{Commonscat|Charitum Montes}})
Por outro lado há evidências para a teoria alternativa, pois grande parte da superfície de Marte é coberta por um manto fofo espesso, o qual se acredita ser uma mistura de gelo e poeira. O manto rico em gelo, com espessura de poucos metros, faz com que a superfície fique mais fofa, mas há locais em que esta apresenta uma superfície desnivelada, lembrando a superfície de uma bola de basquete. Sob certas condições o gelo poderia derreter e fluir encosta abaixo, criando ravinas. Por haver poucas crateras nesse manto, conclui-se que o manto é relativamente jovem. Uma excelente vista deste manto é a imagem da borda da [[Ptolemaeus (cratera marciana)|cratera Ptolemaeus]], vista pela [[HiRISE]].<ref>{{cite journal | last1 = Christensen | first1 = PR | title = Formation of recent martian gullies through melting of extensive water-rich snow deposits. | journal = Nature | volume = 422 | issue = 6927 | pages = 45–8 | year = 2003 | pmid = 12594459 | doi = 10.1038/nature01436 }}</ref>
O manto rico em gelo pode ser resultado de mudanças climáticas.<ref>http://news.nationalgeographic.com/news/2008/03/080319-mars-gullies_2.html</ref> Mudanças na órbita e inclinação de Marte provocam mudanças significativas na distribuição de gelo de água desde regiões polares até as latitudes equivalentes às do Texas. Durante certos períodos climáticos o vapor d’água escapa da capa polar e vai para a atmosfera. A água retorna ao solo em latitudes mais baixas na forma de depósitos ou gelo misturado generosamente com a poeira. A [[atmosfera de Marte]] contém uma grande quantidade de finas partículas de poeira. O vapor d’água se condensa sobre as partículas, então as partículas maiores carregadas de água caem no solo. Quando a obliquidade de Marte atinge seu ponto máximo, mais de 2&nbsp;cm de gelo pode ser removido da capa glacial de verão e depositado nas latitudes médias. Este movimento de água poderia durar por milhares de anos e criar uma camada de neve com mais de 10 metros de espessura.<ref>{{cite journal | last1=Jakosky | first1=Bruce M. | last2=Carr | first2=Michael H. | title=Possible precipitation of ice at low latitudes of Mars during periods of high obliquity | journal=Nature | volume=315 | pages=559–561 | bibcode = 1985Natur.315..559J | year=1985 | doi = 10.1038/315559a0 }}</ref><ref>{{cite journal | last1= Jakosky | first1= Bruce M. | last2= Henderson | first2= Bradley G. | last3= Mellon | first3= Michael T. | title= Chaotic obliquity and the nature of the Martian climate | journal= Journal of Geophysical Research | volume= 100 | pages= 1579–1584 | bibcode = 1995JGR...100.1579J | year= 1995 | doi = 10.1029/94JE02801 }}</ref> Quando o gelo no topo da camada superficial volta para a atmosfera, ela deixa a poeira para trás, isolando o gelo residual.<ref>{{cite news | author=MLA NASA/Jet Propulsion Laboratory |date = 18 de dezembro de 2003 | title= Mars May Be Emerging From An Ice Age |work= ScienceDaily |accessdate= 19 de fevereiro de 2009 |url= http://www.sciencedaily.com/releases/2003/12/031218075443.htm }}</ref>
{{Commonscat|Charitum Montes}}
 
{{referências}}
{{marte-geral}}
182

edições