Campo de força (química): diferenças entre revisões

Conteúdo apagado Conteúdo adicionado
Linha 30:
Todos [[potenciais interatômicos]] baseiam-se em inúmeras aproximações e derivam de diferentes tipos de dados experimentais. Por isso, eles são chamados de ''empíricos''. Algumas funções de energia existentes não levam em conta a [[polarização dielétrica| polarização]] eletrônica do meio ambiente, um efeito que pode reduzir significativamente interações eletrostáticas de cargas atômicas parciais. Este problema foi resolvido através do desenvolvimento de "campos de força polarizáveis" <ref name="Ponder">Ponder JW and Case DA. (2003). Interatomic potentials and their relative parameters for protein simulations. ''Adv. Prot. Chem.'' '''66''' 27-85.</ref><ref name="warshel">Warshel A, Sharma PK, Kato M and Parson WW (2006). "Modeling Electrostatic Effects in Proteins." ''Biochim. Biophys. Acta'' '''1764''' 1647-1676.</ref> ou usando uma [[constante dielétrica]] macroscópica. No entanto, a aplicação de um único valor de [[constante dielétrica]] é questionável em ambientes altamente heterogêneos de proteínas ou membranas biológicas, e a natureza do dielétrico depende do modelo utilizado.<ref name="Shultz">Schutz CN. and Warshel A. (2001). "What are the dielectric "constants" of proteins and how to validate electrostatic models?". ''Proteins'' '''44''' 400-417.</ref>
 
Todos os tipos de [[forças de Van der Waals]] também são fortemente dependentes do ambiente, porque essas forças são originárias de interações de dipolos induzidos e "instantâneos" (ver [[Força intermolecular]]). A teoria original de [[Fritz London]] destas forças só pode ser aplicada no vácuo. Uma teoria mais geral das [[forças de Van der Waals]] em meio condensado foi desenvolvida por A. D. McLachlan em 1963 (Esta teoria inclui a abordagem original de London como um caso especial)<ref name="Israelachvili">Israelachvili, J.N. (1992). ''Intermolecular and surface forces.'' Academic Press, San Diego.</ref>.
 
<!--
... The original [[Fritz London]] theory of these forces can only be applied in vacuum. A more general theory of [[Van der Waals force]]s in condensed media was developed by A. D. McLachlan in 1963 (this theory includes the original London's approach as a special case).<ref name="Israelachvili">Israelachvili, J.N. (1992). ''Intermolecular and surface forces.'' Academic Press, San Diego.</ref> The McLachlan theory predicts that van der Waals attractions in media are weaker than in vacuum and follow the "like dissolves like" rule, which means that different types of atoms interact more weakly than identical types of atoms.<ref name="Leckband">Leckband, D. and Israelachvili, J. (2001). "Intermolecular forces in biology". ''Quart. Rev. Biophys.'' '''34''' 105-267.</ref> This is in contrast to "combinatorial rules" or Slater-Kirkwood equation applied for development of the classical force fields. The "combinatorial rules" state that interaction energy of two dissimilar atoms (e.g. C…N) is an average of the interaction energies of corresponding identical atom pairs (i.e. C…C and N…N). According to McLachlan theory, the interactions of particles in a media can even be completely repulsive, as observed for liquid [[helium]].<ref name="Israelachvili" /> The conclusions of McLachlan theory are supported by direct measurements of attraction forces between different materials ([[Hamaker constant]]), as explained by [[Jacob Israelachvili]] in his book "Intermolecular and surface forces". It was concluded that "''the interaction between hydrocarbons across water is about 10% of that across vacuum''".<ref name="Israelachvili" /> Such effects are unaccounted in the standard molecular mechanics.
 
Another round of criticism came from practical applications, such as protein structure refinement. It was noted that [[CASP]] participants did not try to refine their models to avoid "''a central embarrassment of molecular mechanics, namely that energy minimization or molecular dynamics generally leads to a model that is less like the experimental structure''".<ref name="Koehl">Koehl P. and Levitt M. (1999). "A brighter future for protein structure prediction". ''Nature Struct. Biol.'' '''6''' 108-111.</ref> Actually, the force fields have been successfully applied for protein structure refinement in different [[X-ray crystallography]] and [[NMR spectroscopy]] applications, especially using program XPLOR.<ref name="Brunger">Brunger AT and Adams PD. (2002). "Molecular dynamics applied to X-ray structure refinement". ''Acc. Chem. Res.'' '''35''' 404-412.</ref> However, such refinement is driven primarily by a set of experimental constraints, whereas the interatomic potentials serve merely to remove interatomic hindrances. The results of calculations are practically the same with rigid sphere potentials implemented in program DYANA <ref name="Guntert">Guntert P. (1998). "Structure calculation of biological macromolecules from NMR data". ''Quart. Rev. Biophys.'' '''31''' 145-237.</ref> (calculations from NMR data), or with programs for crystallographic refinement that do not use any energy functions. The deficiencies of the interatomic potentials remain a major bottleneck in [[homology modeling]] of proteins.<ref name="Tramontano">Tramontano A. and Morea V. (2003). "Assessment of homology-based predictions in CASP5". ''Proteins.'' '''53''' 352-368.</ref> Such situation gave rise to development of alternative empirical scoring functions specifically for [[ligand docking]],<ref name="Gohlke">Gohlke H. and Klebe G. (2002). "Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors". ''Angew. Chem. Internat. Ed.'' '''41''' 2644-2676.</ref> [[protein folding]],<ref name="Edgcomb">Edgcomb S.P. and Murphy K.P. (2000). "Structural energetics of protein folding and binding". ''Current Op. Biotechnol.'' '''11''' 62-66.</ref><ref name="Lazaridis">Lazaridis T. and Karplus M. (2000). "Effective energy functions for protein structure prediction". ''Curr. Op. Struct. Biol.'' '''10''' 139-145.</ref><ref name="awml">Levitt M. and Warshel A. (1975). "Computer Simulations of Protein Folding". ''Nature'' '''253''' 694-698.</ref> homology model refinement,<ref name="krieger">Krieger E., Joo K., Lee J., Lee J., Raman S., Thompson J., Tyka M., Baker D. and Karplus K. (2009). "Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8". ''Proteins'' '''77 Suppl 9''' 114-122.</ref> computational [[protein design]],<ref name="Gordon">Gordon DB, Marshall SA, and Mayo SL (1999). "Energy functions for protein design". ''Curr. Op. Struct. Biol.'' '''9''' 509-513.</ref><ref name="Mendes">Mendes J., Guerois R, and Serrano L (2002). "Energy estimation in protein design". ''Curr. Op. Struct. Biol.'' '''12''' 441-446.</ref><ref name="Rohl">Rohl CA, Strauss CEM, Misura KMS, and Baker D. (2004). "Protein structure prediction using Rosetta". ''Meth. Enz.'' '''383''' 66-93.</ref> and modeling of proteins in membranes.<ref name="Lomize1">Lomize AL, Pogozheva ID, Lomize MA, Mosberg HI (2006). "Positioning of proteins in membranes: A computational approach". ''Protein Sci.'' '''15''' 1318-1333.</ref>