Diferenças entre edições de "Elemento inverso"

6 bytes adicionados ,  19h05min de 9 de setembro de 2017
m (Ajustes (3.1.1) utilizando AWB)
Para fixação imediata e simples de ideias, ao se tratar de ''conjuntos numéricos unidimensionais'' (aqueles definidos sobre um [[espaço vetorial]] R<sup>n</sup> = R<sup>1</sup> = R, em que "R" figura como o [[Números reais|conjunto dos números reais]] e "n" = 1 figura como a dimensão linear do espaço vetorial em exame), por exemplo, qualquer dos conjuntos numéricos que são subconjuntos amplos de R, fala-se mais comumente em:
# [[Inverso aditivo]]: o elemento (procurado) que somado com um elemento (dado) resulta o [[elemento neutro aditivo]], nestes casos, precisamente o [[Zero|número zero]]. Assim, -3 é o inverso aditivo de +3, pois (-3) + (+3) = 0. Conversamente, +3 é o inverso aditivo de -3. Fala-se, então, em pares conjugados de inversos aditivos. Também: (+½ e -½), (+π e -π) etc... são outros pares conjugados de inversos aditivos. Costuma-se chamar ao [[inverso aditivo]] também [[elemento oposto aditivo]] (ou, simplesmente, [[oposto]], quando não houver possibilidade de confusão, ou pelo uso do termo em domínio específico, inambíguo, unívoco). Ainda se usam os termos [[elemento simétrico aditivo]] ou, simplesmente — ressalva feita — [[simétrico]].
# [[Inverso multiplicativo]]: o elemento (procurado) que multiplicado por um elemento (dado) resulta o [[elemento neutro multiplicativo]], nestes casos, precisamente o [[Um|número um]]. Assim, 1/3 é o inverso aditivomultipicativo de 3, pois (1/3) . (3) = 1. Conversamente, 3 é o inverso multiplicativo de (1/3). Fala-se, também, em pares conjugados de inversos multiplicativos. Também: (2 e 1/2), (π e 1/π) etc... são outros pares conjugados de inversos multiplicativos. Costuma-se chamar ao [[inverso multiplicativo]] também [[elemento oposto multiplicativo]] (ou, simplesmente, [[oposto]], quando não houver possibilidade de confusão, ou pelo uso do termo em domínio específico, inambíguo, unívoco). Também se usam os termos [[elemento simétrico multiplicativo]] ou, simplesmente — ressalva feita — [[simétrico]].
 
Contudo, é preciso ter em mente que os exemplos relacionados às leis de composição "adição" e "multiplicação", conforme definidas sobre conjuntos numéricos sobre "R<sup>n</sup>", ''não são os únicos'', tampouco necessariamente os mais importantes irrestritamente — embora seja certo reconhecer que são muito importantes na prática do dia-a-dia. Com efeito, não apenas o matemático abstrato (o cientista, o pesquisador, o profissional...) lida com muitíssimos outros exemplos de inversos e de neutros, ''mas, também, o cidadão comum, frequentemente sem o saber sequer''. Apenas para fixar ideias nesse domínio, suponha-se o seguinte exemplo simples: (1) alguém dá um passo adiante; (2) a seguir, esse alguém dá um passo atrás, retornando à posição originária; (3) é certo, pois, conhecer o par ("passo adiante" e "passo atrás") como par conjugado de "inversos de passo" (vetores unidimensionais?...) e o resultado (retorno ao ponto de partida) como o "elemento neutro de passo". Este exemplo — extremamente simples — foi citado para salientar a absoluta generalidade da presença de tais estruturas na lida abstrata e também na prática do dia-a-dia. São as estruturas matemáticas, os [[Sistema matemático|sistemas matemáticos]], ''mais onipresentes que se imagina''.
Utilizador anónimo