Diferenças entre edições de "Órbita"

Eu enfeitei
m (Foram revertidas as edições de 79.168.25.173 (usando Huggle) (3.4.9))
Etiquetas: Huggle Reversão
(Eu enfeitei)
 
== História ==
No [[geocentrismo|modelo geocêntrico]] do [[sistema solar]], mecanismos como o [[equante|deferente e epiciclo]] eram originalmente utilizados para explicar o movimento dos planetas em condições de esferas perfeitas ou anéis.
 
= No [[geocentrismo|modelo geocêntrico]] do [[sistema solar]], mecanismos como o [[equante|deferente e epiciclo]] eram originalmente utilizados para explicar o movimento dos planetas em condições de esferas. perfeitas ou anéis.=
A base para a compreensão das órbitas foi, primeiramente, formulada por [[Johannes Kepler]], cujos resultados foram sumarizados em suas [[Leis de Kepler|três leis da monção planetária]]. Primeiro, ele descobriu que as órbitas dos planetas no nosso sistema solar são [[elipse|elípticas]], não circulares (ou [[epiciclo|epicíclicas]]), tal como tinha sido anteriormente aceito, e que o [[Sol]] não está localizado no centro das órbitas, mas sim em seu [[foco (geometria)|foco]].<ref name="Kepler's Laws of Planetary Motion">{{Citar web|url=http://physics.about.com/od/astronomy/p/keplerlaws.htm|título=Leia de Kepler da Monção Planetária|último=Jones|primeiro=Andrew|publicado=[[about.com]]|língua=[[língua inglesa|inglês]]|acessodata=[[1º de junho]] de [[2008]]}}</ref> Segundo, ele descobriu que a [[velocidade orbital]] de cada planeta não é constante, tal como anteriormente teve-se pensado, mas sim a velocidade do planeta depende da distância dele do sol. E terceiro, Kepler descobriu uma relação universal entre as propriedades orbitais de todos os planetas orbitando o sol. Para cada planeta, "''o cubo da distância do planeta ao sol, medido em [[unidade astronômica|unidades astronômicas]] (UA), é igual ao quadrado do [[período (física)|período]] orbital do planeta, medido em [[ano|anos terráqueos]]''". [[Júpiter (planeta)|Júpiter]], por exemplo, é aproximadamente 5,2 UA do sol e seu período orbital é 11,86 anos terráqueos. Logo, 5,2 ao cubo é igual a 11,86 ao quadrado, como previsto.
 
= A base para a compreensão das órbitas foi, primeiramente, formulada por [[Johannes Kepler]], cujos resultados foram sumarizados em suas [[Leis de Kepler|três leis da monção planetária]]. Primeiro, ele descobriu que as órbitas dos planetas no nosso sistema solar são [[elipse|elípticas]], não circulares (ou [[epiciclo|epicíclicas]]), tal como tinha sido anteriormente aceito, e que o [[Sol]] não está localizado no centro das órbitas, mas sim em seu [[foco (geometria)|foco]].<ref name="Kepler's Laws of Planetary Motion">{{Citar web|url=http://physics.about.com/od/astronomy/p/keplerlaws.htm|título=Leia de Kepler da Monção Planetária|último=Jones|primeiro=Andrew|publicado=[[about.com]]|língua=[[língua inglesa|inglês]]|acessodata=[[1º de junho]] de [[2008]]}}</ref> Segundo, ele descobriu que a [[velocidade orbital]] de cada planeta não é constante, tal como anteriormente teve-se pensado, mas sim a velocidade do planeta depende da distância dele do sol. E terceiro, Kepler descobriu uma relação universal entre as propriedades orbitais de todos os planetas orbitando o sol. Para cada planeta, "''o cubo da distância do planeta ao sol, medido em [[unidade astronômica|unidades astronômicas]] (UA), é igual ao quadrado do [[período (física)|período]] orbital do planeta, medido em [[ano|anos terráqueos]]''". [[Júpiter (planeta)|Júpiter]], por exemplo, é aproximadamente 5,2 UA do sol e seu período orbital é 11,86 anos terráqueos. Logo, 5,2 ao cubo é igual a 11,86 ao quadrado, como previsto. =
[[Isaac Newton]] demonstrou que as leis de Kepler eram derivadas de sua teoria gravitacional e que, em geral, as órbitas de corpos sujeitos à [[gravidade]] eram cônicas se a força da gravidade se propagasse instantaneamente. Newton mostrou que, para um par de corpos, os tamanhos das órbitas eram inversamente proporcionais a suas massas, e que os corpos giram sobre seus centros comuns de massa. Quando um corpo é bem mais maciço que um outro, é conveniente uma aproximação para ter o centro da massa coincidindo com o centro do corpo mais maciço.
 
= [[Isaac Newton]] demonstrou que as leis de Kepler eram derivadas de sua teoria gravitacional e que, em geral, as órbitas de corpos sujeitos à [[gravidade]] eram cônicas se a força da gravidade se propagasse instantaneamente. Newton mostrou que, para um par de corpos, os tamanhos das órbitas eram inversamente proporcionais a suas massas, e que os corpos giram sobre seus centros comuns de massa. Quando um corpo é bem mais maciço que um outro, é conveniente uma aproximação para ter o centro da massa coincidindo com o centro do corpo mais maciço. =
[[Albert Einstein]] foi capaz de mostrar que a gravidade existia devido a uma curvatura do [[espaço-tempo]] e foi capaz de remover a hipótese de Newton de que a força da gravidade se propaga instantaneamente. Na [[teoria da relatividade]], as órbitas seguem trajetórias geodésicas, as quais se aproximam muito das previsões Newtonianas. No entanto, há diferenças e estas podem ser usadas para determinar qual das duas teorias concordam com a realidade. Essencialmente, todas as evidências experimentais concordam com a teoria da relatividade.
 
= [[Albert Einstein]] foi capaz de mostrar que a gravidade existia devido a uma curvatura do [[espaço-tempo]] e foi capaz de remover a hipótese de Newton de que a força da gravidade se propaga instantaneamente. Na [[teoria da relatividade]], as órbitas seguem trajetórias geodésicas, as quais se aproximam muito das previsões Newtonianas. No entanto, há diferenças e estas podem ser usadas para determinar qual das duas teorias concordam com a realidade. Essencialmente, todas as evidências experimentais concordam com a teoria da relatividade. =
 
== Órbitas planetárias ==