Mínimos quadrados generalizados

Nota: não confunda com o método dos momentos generalizado (GMM).

Em Econometria, o método dos mínimos quadrados generalizados (GLS, na sigla em inglês) é uma técnica para estimar parâmetros desconhecidos num modelo de regressão linear. O método GLS é aplicado quando a variância dos erros não é a mesma (heteroscedasticidade), ou quando há certa correlação entre os resíduos. Nestes casos, o método dos mínimos quadrados ordinários pode ser estatisticamente ineficiente ou mesmo viesado. O GLS foi inicialmente descrito por Alexander Aitken em 1934.[1]

Hipóteses do modeloEditar

Seja o modelo na forma matricial

 

Assumimos que[2]

 
 , onde   é uma matriz positiva definida. No caso especial em que temos mínimos quadrados ordinários,  , a matriz identidade.

Esta última hipótese é bem genérica, ou seja, inclui muitos casos. Por exemplo, no caso de heteroscedasticidade, teremos

 

Se tivermos, por outro lado, autocorrelação, mas não heteroscedasticidade, teremos:

 

Variância do estimadorEditar

A variância do estimador   é dada por[2]

  

Ver tambémEditar

Referências

  1. Aitken, A. C. (1934). «On Least-squares and Linear Combinations of Observations». Proceedings of the Royal Society of Edinburgh. 55: 42–48 
  2. a b GREENE, William H. Econometric Analysis. Prentice Hall, 5ª edição. Chapter 10-Nonspherical disturbances-The generalized regression model. Página 191.

Ligações externasEditar