Abrir menu principal

Proporcionalidade

(Redirecionado de Proporção)
Text document with red question mark.svg
Este artigo ou secção contém fontes no fim do texto, mas que não são citadas no corpo do artigo, o que compromete a confiabilidade das informações. (desde abril de 2010)
Por favor, melhore este artigo inserindo fontes no corpo do texto quando necessário.
Disambig grey.svg Nota: Se procura pelo(a) outras acepções - ou casos específicos como as proporções direta ou com o inverso do quadrado -, veja proporcionalidade (desambiguação).

A proporcionalidade, para a matemática, a química e a física, é a mais simples e comum relação entre grandezas. A proporcionalidade direta é um conceito matemático amplamente difundido na população leiga pois é bastante útil e de fácil resolução através da "regra de três". Quando existe proporcionalidade direta, a razão (divisão) entre os correspondentes valores das duas grandezas relacionadas é uma constante, e a esta constante dá-se o nome de constante de proporcionalidade.

Índice

DefiniçãoEditar

Em regra, a proporcionalidade é uma relação binária que pode ocorrer numa dupla de funções reais de mesmo domínio. Uma função é proporcional a outra se e somente se existe(m) alguma(s) constante(s) real(is) – denominada(s) constante(s) de proporcionalidade – que igual(em) cada razão entre as valorações. Então, dados um conjunto   e duas funções  , temos que:   é proporcional a   se e só se existe alguma constante real   tal que, para todo   ao longo de  ,   Isso é

 

Isso vale para os números reais; álgebras exóticas não serão abordadas nesse artigo.

Sendo verdadeira a proporcionalidade, existirão exatamente um ou dois valores possíveis para  .

 

E mantêm a propriedade de serem inversas multiplicativas uma da outra.

PropriedadesEditar

Algumas propriedades da proporcionalidade serão enunciadas e provadas abaixo:

EquivalenteEditar

A relação de proporcionalidade é reflexiva, comutativa (ou "simétrica") e transitiva, portanto, é uma relação de equivalência.

ReflexivaEditar

Toda função é proporcional a si mesma.

 

Provada a partir da definição:

 

Este é o único caso em que existe uma só constante real de proporcionalidade.

Comutativa (ou "Simétrica")Editar

Não existe uma ordem exacta dos objetos, pois seja qual for a sua colocação a proporcionalidade não se altera.

 

Isso porque compartilham do mesmo conjunto de constantes de proporcionalidade:

 

TransitivaEditar

A proporcionalidade é transitiva:

 

Portando a expressão acima pode ser simplificada em:

 

Prova-se a partir da definição:

 

O produto entre constantes é constante.

Mecanismos de resoluçãoEditar

Eis alguns processos de cálculo que conservam uma proporcionalidade verdadeira:

  1. Multiplicação de ambos os termos
  2. Inversão de ambos os termos
  3. Eliminação de constantes

AlgoritmosEditar

  1. "Regra de três" ou "Multiplicação cruzada"
  2. "Regra de três composta"

Deduzindo proporcionalidades a partir de igualdadesEditar

Considere, por exemplo, a equação de Clapeyron:

 

Formas de proporcionalidadeEditar

Retórica Simbologia Exemplo
"variação proporcional"   Retas paralelas
"directamente proporcional"   Semelhança de triângulos
"inversamente proporcional"   Lei de Boyle-Mariotte (pressão e volume)
"proporcional ao quadrado"   Esfera (raio e volume)
"inversamente proporcional ao quadrado"   Gravitação Universal e Lei de Coulomb (força e distância)
"proporcional ao cubo"   Semelhança de pirâmides
"inversamente proporcional ao cubo"   Força dipolo permanente (força e distância)
"quadrado proporcional ao cubo"   Terceira lei de Kepler (período e semieixo maior)
"em divina proporção"   As alturas do Homem vitruviano até o umbigo e até a cabeça.

Proporcionalidade inversaEditar

Se duas funções são inversamente proporcionais, então uma é proporcional ao inverso multiplicativo da outra.

 

Isso ocorre por que podemos inverter ambos os termos da expressão de proporcionalidade. Ambas as formas estabelecem que:

 

Divina proporçãoEditar

Quando o número de ouro   é uma constante duma relação verdadeira de uma proporcionalidade entre funções positivas diz-se que estão em divina proporção.

Isso ocorre se e somente se:

 

AplicaçõesEditar

Além de um enorme número de aplicações cotidianas, a proporcionalidade, associada à análise dimensional é muito útil ao empirismo científico.

A proporcionalidade também é de interesse das artes e do estudo da estética.

LinearizaçãoEditar

Embora a mais simples relação entre grandezas, é sabido contudo que grande parte das relações encontradas entre grandezas físicas naturais não se fazem mediante proporção direta. Há contudo ferramentas matemáticas específicas, a exemplo a troca de variáveis e as linearizações, que permitem reduzir uma relação inicialmente mais complicada a uma relação de proporção direta, quando não ao longo de todo o domínio de validade da relação, ao menos localmente. A expansão em séries de Taylor desempenha importante papel em áreas científicas exatas tanto em teorias como na prática. Indica-se a leitura de artigos específicos para mais informações sobre o assunto.

Ver tambémEditar

BibliografiaEditar

  Este artigo sobre física é um esboço. Você pode ajudar a Wikipédia expandindo-o.
  Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.