Abrir menu principal

Valor eficaz

uma estatística; raiz quadrada da média dos quadrados
(Redirecionado de RMS (estatística))
Disambig grey.svg Nota: Este artigo é sobre um conceito estatístico. Se procura outros conceitos com as mesmas iniciais, veja RMS.

Em matemática, a raiz do valor quadrático médio ou RMS (do inglês root mean square) ou valor eficaz é uma medida estatística da magnitude de uma quantidade variável. Pode calcular-se para uma série de valores discretos ou para uma função variável contínua. O nome deriva do fato de que é a raiz quadrada da média aritmética dos quadrados dos valores. É um caso especial da potência média com o expoente p = 2.

DefiniçãoEditar

O RMS para uma coleção de N valores {x1, x2, ... , xN} é dado pela fórmula (1):

 

Para uma função variável contínua f(t) definida sobre o intervalo T1t ≤ T2 o RMS é dado pela expressão:

 

O valor rms para uma função ao longo do tempo é:

 

O RMS ao longo do tempo para uma função periódica é igual ao RMS de um período da função. O valor RMS de uma função ou sinal contínuos pode ser avaliado, tomando o RMS de uma série de amostras, igualmente espaçadas no tempo.

Equações para calcular os valores RMS de formas de onda comunsEditar

Grandezas e Unidades:
't:' tempo em Segundos (s)
'f:' Frequencia em Hertz (Hz)
'a:' amplitude (valor de pico). Pode ser qualquer grandeza física, ex.: Corrente (Ampéres), Tensão (Volts), Força (Newtons), etc
'%:' é a operação "Resto da divisão inteira"
Ex.:
10 / 3 = 3,333333...
10 % 3 = 0,333333...
Forma de Onda Equação RMS
Senoide (pt-BR) / Sinusoide (pt-PT)   
Onda Quadrada    
Senoide / Sinusoide e Modificada    
Onda "Dente-de-Serra"    

UtilizaçãoEditar

O valor eficaz de uma função é frequentemente usado na física e na eletrônica. Por exemplo, nós podemos calcular a Potência P dissipada por um condutor elétrico de resistência R. Ela é fácil de se calcular quando uma corrente constante (I) percorre o condutor, que é simplesmente:

 

ou, considerando uma tensão eléctrica V, é aplicada a uma resistência R, fica:

 

Mas e se a corrente é uma função I(t) que varia seu valor no tempo? É neste momento que se utiliza o valor eficaz. Neste caso, pode-se substituir o valor da corrente constante I pelo valor eficaz da função I(t) na equação acima para se obter a potência dissipada média, assim:

 

Alternativamente, se a tensão é uma função V(t) que varia seu valor no tempo, a potência dissipada média é dada pela equação:

 

No caso comum da corrente alternada, quando I(t) é uma corrente senoidal, tal como se verifica na energia eléctrica distribuída na rede pública, o valor RMS é fácil de calcular a partir da equação (2) acima indicada. O resultado é:

 

ou, no caso da tensão:

 

em que Ip e Vp são os valores de pico (amplitude).

O valor RMS pode ser calculado usando a equação (2) para qualquer forma de onda, por exemplo, um sinal de áudio ou de rádio. Assim, podemos calcular a potência média fornecida a uma carga específica. Por esta razão, as tensões indicadas em tomadas de energia e equipamentos eléctricos, (127V ou 220V) são os valores RMS e não os valores de pico (amplitudes).

No campo de áudio, potência média é frequentemente (e de forma errada) designada potência RMS. Isto deve-se provavelmente derivado de Tensão RMS ou corrente RMS. Além disso, como o valor RMS implica alguma forma de valor médio, expressões como "potência RMS de pico", frequentemente utilizadas em anúncios de amplificadores de áudio, não têm qualquer significado.

Relação entre média aritmética e desvio padrãoEditar

Se   for a média aritmética e   o desvio padrão de uma população, então:

 

Ver tambémEditar