Abrir menu principal

Teorema do fluxo máximo e corte mínimo

Question book.svg
Este artigo ou secção não cita fontes confiáveis e independentes (desde março de 2011). Ajude a inserir referências.
O conteúdo não verificável pode ser removido.—Encontre fontes: Google (notícias, livros e acadêmico)

No campo da Otimização, o teorema do fluxo máximo-corte mínimo afirma que em um fluxo de rede, o valor máximo do fluxo passando de um ponto-origem até um ponto destino é igual à sua capacidade mínima, que quando removida da rede de uma forma específica ocasiona a situação onde nenhum fluxo passa mais entre a origem e o destino..

O teorema do fluxo máximo-corte mínimo é um caso especial do teorema da dualidade e pode ser usado pra derivar o Teorema de Menger e o Teorema de König-Egerváry.

DefiniçãoEditar

Seja   uma rede (digrafo) com   e   sendo a origem e o destino de   respectivamente.

A capacidade de uma aresta é um mapeamento c: ER+, escrito como cuv ou c(u,v). Ele representa a quantidade máxima de fluxo pode passar por uma aresta.
O fluxo é um mapeamento f: ER+, escrito como fuv or f(u,v), sujeito às seguintes duas restrições:
  1.   para cada   (restrição de capacidade)
  2.   para cada   (conservação dos fluxos).
O valor do fluxo é definido por | f | = Σv∈Vfsv, onde s é a origem de N. Ele representa a quantidade de fluxo passando da origem ao destino.

O problema do fluxo máximo é maximizar | f |, ou seja, transportar o maior quantidade possível de fluxo de s até t.

Um corte s-t C = (S,T) é definido como o particionamento de V tal que sS e tT. O conjunto de corte de C é o conjunto {(u,v)∈E | uS, vT}. Note que se as arestas no conjunto de corte de C forem removidas, | f | = 0.
A capacidade de um corte s-t é definida por  .

O problema do corte mínimo é minimizar  , ou seja, determinar S e T tal que a capacidade do corte S-T é mínimo.

DeclaraçãoEditar

O teorema do Fluxo Máximo-Corte Mínimo afirma que

O valor máximo de um fluxo s-t é igual a capacidade mínima de um corte s-t.