Wikipédia:Artigos destacados/arquivo/Buraco negro

O buraco negro supermassivo no centro da galáxia elíptica super gigante Messier 87, com uma massa de ~ 7 bilhões de vezes a do Sol, como mostrado na primeira imagem divulgada pelo Event Horizon Telescope (10 de abril de 2019). Na imagem, são visíveis o anel de emissão em forma de crescente e a sombra central, que são vistas ampliadas gravitacionalmente do anel de fótons do buraco negro e da zona de captura de fótons do seu horizonte de eventos. A forma crescente surge da rotação do buraco negro e dos raios relativísticos; a sombra é cerca de 2,6 vezes o diâmetro do horizonte de eventos.
O buraco negro supermassivo no centro da galáxia elíptica super gigante Messier 87, com uma massa de ~ 7 bilhões de vezes a do Sol, como mostrado na primeira imagem divulgada pelo Event Horizon Telescope (10 de abril de 2019). Na imagem, são visíveis o anel de emissão em forma de crescente e a sombra central, que são vistas ampliadas gravitacionalmente do anel de fótons do buraco negro e da zona de captura de fótons do seu horizonte de eventos. A forma crescente surge da rotação do buraco negro e dos raios relativísticos; a sombra é cerca de 2,6 vezes o diâmetro do horizonte de eventos.

Buraco negro é uma região do espaço-tempo em que o campo gravitacional é tão intenso que nada — nenhuma partícula ou radiação eletromagnética como a luz — pode escapar dela. A teoria da relatividade geral prevê que uma massa suficientemente compacta pode deformar o espaço-tempo para formar um buraco negro. O limite da região da qual não é possível escapar é chamado de horizonte de eventos. Embora o horizonte de eventos tenha um efeito enorme sobre o destino e as circunstâncias de um objeto que o atravessa, não tem nenhuma característica local detectável. De muitas maneiras, um buraco negro age como um corpo negro ideal, pois não reflete luz. Além disso, a teoria quântica de campos no espaço-tempo curvo prevê que os horizontes de eventos emitem radiação Hawking, com o mesmo espectro que um corpo negro de temperatura inversamente proporcional à sua massa. Essa temperatura é da ordem dos bilionésimos de um kelvin para buracos negros de massa estelar, o que a torna praticamente impossível de observar.

Objetos cujos campos gravitacionais são fortes demais para a luz escapar foram considerados pela primeira vez no século XVIII por John Michell e Pierre-Simon Laplace. A primeira solução moderna da relatividade geral que caracterizaria um buraco negro foi encontrada por Karl Schwarzschild em 1916, embora sua interpretação como uma região do espaço da qual nada possa escapar tenha sido publicada pela primeira vez por David Finkelstein em 1958. Os buracos negros eram há muito considerados uma curiosidade matemática; foi na década de 1960 que o trabalho teórico mostrou que eram uma previsão genérica da relatividade geral. A descoberta de estrelas de nêutrons por Jocelyn Bell Burnell em 1967 despertou o interesse em objetos compactos em colapso gravitacional como uma possível realidade astrofísica. (leia mais...)