Portal:Eletrônica/Artigo selecionado

Engenharia elétrica é o ramo da engenharia que geralmente trabalha com os estudos e aplicações da eletricidade, eletromagnetismo e eletrônica. Este setor surgiu em meados do século XIX quando da comercialização, da distribuição e utilização da energia elétrica.

Nos Estados Unidos, a engenharia elétrica é considerada para lidar com os problemas associados com sistemas de energia elétrica e sistemas eletrônicos, sendo que as principais instituições, como o Massachusetts Institute of Technology, California Institute of Technology, Stanford University, e University of Michigan, abordam sistemas elétricos, eletrônica, microeletrônica ou de comunicações de forma integrada à engenharia elétrica. Nos restantes países da América não é diferente. No Brasil, por exemplo, à eletrônica em alguns cursos corresponde a maior parte dos conteúdos abordados durante a graduação em engenharia elétrica. Sendo assim, a distinção entre engenharia elétrica e engenharia eletrônica não ocorre, são considerados um curso comum.

Na Europa, geralmente são ofertados cursos de engenharia eletrotécnica e eletrônica separadamente, onde o primeiro é voltado à sistemas de energia elétrica, e o segundo apresenta maior ênfase nos sistemas eletrônicos. Entretanto, entre as melhores universidades, como a Oxford na Inglaterra, em alguns casos é mantido o título de engenheiro eletricista abrangendo ambos os conteúdos. Outros cursos superiores relacionados com eletrônica são: Engenharia Eletrônica e de Telecomunicações, Engenharia de Sistemas e Comunicações, Engenharia Informática, Engenharia Informática e de Computadores, entre outras.

No Brasil, a engenharia elétrica é geralmente cursada em cinco anos, e assim como nos EUA, incorpora a engenharia eletrônica e telecomunicações, tal como é reconhecido pelo Ministério da Educação e pelo Conselho Federal de Engenharia e Agronomia. Frequentemente estão presentes disciplinas que podem sobrepor o processamento de energia e o processamento de informações, como por exemplo, eletrônica industrial.

 


Uma fotografia do detalhe interno de um minidisjuntor termomagnético projetado para atender as Normas Internacionais (IEC), de corrente nominal de 10 ampères e montagem em trilho DIN.

Um disjuntor é um dispositivo eletromecânico, que funciona como um interruptor automático, destinado a proteger uma determinada instalação elétrica contra possíveis danos causados por curto-circuitos e sobrecargas elétricas. A sua função básica é a de detectar picos de corrente que ultrapassem o adequado para o circuito, interrompendo-a imediatamente antes que os seus efeitos térmicos e mecânicos possam causar danos à instalação elétrica protegida.

Uma das principais características dos disjuntores é a sua capacidade de poderem ser rearmados manualmente, depois de interromperem a corrente em virtude da ocorrência de uma falha. Diferem assim dos fusíveis, que têm a mesma função, mas que ficam inutilizados quando realizam a interrupção. Por outro lado, além de dispositivos de proteção, os disjuntores servem também de dispositivos de manobra, funcionando como interruptores normais que permitem interromper manualmente a passagem de corrente elétrica.

Existem diversos tipos de disjuntores, que podem ser desde pequenos dispositivos que protegem a instalação elétrica de uma única habitação até grandes dispositivos que protegem os circuitos de alta tensão que alimentam uma cidade inteira.

 


Lêiseres de diferentes cores.

Laser (da sigla em inglês para light amplification by stimulated emission of radiation, ou seja, amplificação da luz por emissão estimulada de radiação), também aportuguesado para láser ou lêiser, é um dispositivo que produz radiação eletromagnética com características muito especiais: ela é monocromática (possui comprimento de onda muito bem definido), coerente (todos os fótons que compõem o feixe emitido estão em fase) e colimada (propaga-se como um feixe de ondas praticamente paralelas).

Histórico
Para explicar o efeito fotoelétrico, Albert Einstein postulou em 1905 que a luz é constituída por pacotes discretos e bem determinados de energia denominados quanta de luz que, posteriormente, passaram a ser chamados de fótons, termo cunhado por Gilbert Lewis em 1926.

Em 1913 o dinamarquês Niels Bohr apresentou seu modelo de átomo, no qual os elétrons orbitam o núcleo em níveis de energia bem determinados e somente podem "saltar" de um nível para outro se receberem ou emitirem fótons com a quantidade de energia (que pode ser calculada a partir de seu comprimento de onda) exata, exigida para o salto completo.

Em 1925, Erwin Schrödinger e Werner Heisenberg modificaram a forma de se interpretar o modelo de átomo de Bohr, postulando que os elétrons são partículas que apresentam propriedades de ondas, cujo comportamento pode ser explicado por suas funções de onda. Tais funções foram desenvolvidas por Schrödinger e preveem os diferentes níveis que o elétron pode assumir no átomo e as exatas energias associadas. Isso significa que cada tipo determinado de átomo pode ser excitado sempre em quantidades bem definidas através da absorção de um tipo determinado de fóton de comprimento de onda específico.

 


Antena utilizada na radiodifusão.

Antena é um dispositivo que transforma energia eletromagnética guiada pela linha de transmissão em energia eletromagnética irradiada, ou o contrário, isto é, transforma energia eletromagnética irradiada em energia eletromagnética guiada para a linha de transmissão. Por isso, a função da antena é primordial em qualquer comunicação realizada por radiofrequência. A relação entre as potências de emissão e recepção é proporcional e obedece à Fórmula de Friis.

Histórico
As primeiras antenas, presume-se, foram criadas por Heinrich Hertz, em 1886, com a finalidade de auxiliar no estudo e desenvolvimento das teorias eletromagnéticas.

Hertz pesquisou diversos dispositivos durante a realização de seus experimentos para testar e provar a teoria eletromagnética, proposta pelo matemático e físico James Clerk Maxwell.

As primeiras antenas de que se tem notícia foram produzidas por Hertz. Eram formadas por duas placas de metal conectadas a dois bastões metálicos. Estes dispositivos eram ligados a duas esferas, separadas entre si por uma distância pré-determinada. Nas esferas era adaptada uma bobina, que gerava descargas por centelhamento, e as centelhas, ao atravessarem o espaço entre esferas, produziam ondas eletromagnéticas oscilatórias nos bastões.