Abrir menu principal
Question book-4.svg
Esta página cita fontes confiáveis e independentes, mas que não cobrem todo o conteúdo (desde Dezembro de 2008). Ajude a inserir referências. Conteúdo não verificável poderá ser removido.—Encontre fontes: Google (notícias, livros e acadêmico)

Na Física, isospin (termo derivado de isotopic spin ou isobaric spin) é um termo criado em 1961 que representa um número quântico relacionado às forças fortes no estudo das partículas elementares.

sabor em física de partículas
Números quânticos de sabor:

Números quânticos relatados:


Combinações:


Mistura de sabores

Esta teoria apareceu a partir da constatação de que o próton e o nêutron possuem o mesmo spin (1/2), praticamente a mesma massa, mas possuem cargas elétricas diferentes (+1 e 0). E também que a força de atração que une essas partículas no núcleo atômico é insensível à carga.

O conceito de isospin já foi superado pela cromodinâmica quântica (QCD), porém ele continua a ser bastante usado na física de partículas experimental.

Índice

Operadores de criação e aniquilaçãoEditar

 , cria um próton
 , cria um nêutron
 , destrói um próton
 , destrói um nêutron

Operadores isospinEditar

Os operadores isospin são definidos assim:

 
 , transforma um nêutron num próton
 , transforma um próton num nêutron.

Estrutura de grupoEditar

O termo isospin deriva do fato de os operadores isospin  ,   e   possuirem uma relação de comutação similar à do momento angular ([1], cap. 5):

 ,
 ,
 .

As 'rotações' correspondentes formam um grupo de Lie, conhecido como o grupo isospin.

A consequência disso é que a teoria desenvolvida para o momento angular pode ser rapidamente adaptada para resolver problemas ligados ao isospin.

Multipletos isospinEditar

Semelhante ao caso dos núcleons (próton e nêutron), outras partículas podem ser agrupadas nos assim chamados multipletos ([2], pag. 45):

dubleto-nucleon:  
tripleto-píon:  
quadrupleto-delta:  
etc.

Por conseguinte, a teoria desenvolvida para o primeiro caso pode ser facilmente adaptada aos outros grupos.

AplicaçãoEditar

A invariância isospin pode explicar, por exemplo, por que as duas formas de decaimento da partícula   ocorrem com uma frequencia 2:1 e não como intuitivamente seria esperado 1:1.

 

ReferênciasEditar

[1] Harry J. Lipkin, Lie Groups for Pedestrians (2002) Dover Publications.
[2] G. 't Hooft et al, Lie Groups in Physics (2007) Utrecht University


  Este artigo é um esboço. Você pode ajudar a Wikipédia expandindo-o. Editor: considere marcar com um esboço mais específico.