Radioatividade na Segunda Guerra Mundial

Em 1986, o cientista frânces Henri Becquerel, ao estudar a relação entre substâncias fosforescentes, analisou que sais de urânio emitiam um tipo de radiação que chocou chapas fotográficas. Seguidamente, o casal Pierre e Marie Curie descobriu que outros elementos também emitiam esse tipo de radiação, que foi batizada de radioatividade.

Nas décadas seguintes, pesquisadores como Ernest Rutherford e Frederick Soddy esclareceram diversas singularidades da radioatividade e dos elementos radioativos. Sobre as pesquisas desenvolvidas, a que proporcionou as mais marcantes aplicações foi a sobre a fissão do urânio. Em 1939, esta foi analisada pelos alemães Otto Hahn e Fritz Strassmann e examinada pela física austríaca Lise Meitner, já radicada na Suécia devido à perseguição dos nazistas. Nesse mesmo ano, o exército alemão invadiu a Polônia, iniciando a Segunda Guerra Mundial (1939- 1945). Na guerra, Niels Bohr foi um dos primeiros cientistas aliados a tomar conhecimento de que os alemães tinham obtido a fissão do urânio. Com a enorme quantidade de energia liberada nesse processo, Bohr temeu por seu uso em uma arma. Um fato que reforçou suas suspeitas foi uma visita recebida, na Dinamarca ocupada pelos nazistas, de seu colega alemão Werner Heisenberg, que deu a Bohr um diagrama contendo dados sobre o programa atômico alemão.

Com a perseguição pelos nazistas, Bohr fugiu para os Estados Unidos, onde encontrou Albert Einstein e advertiu-o que os países do Eixo (Alemanha, Itália e Japão) tinham o conhecimento teórico para a fabricação de uma bomba. Einstein, por sua vez, alertou o presidente norte americano Franklin D. Roosevelt. Posteriormente, países Aliados (Estados Unidos, França e Inglaterra) verificaram que o diagrama era de um reator inadequado. Porém, restou a dúvida se esta seria uma farsa para mascarar os progressos alemães. Segundo o historiador Eric Hobsbawm hoje ficou claro que a Alemanha nazista não conseguiu fazer uma bomba nuclear porque a máquina de guerra alemã não quis ou não pôde dedicar-lhe os recursos necessários.

Após Alemanha se render, nove dos principais físicos alemães, sendo dois deles  W. Heisenberg e O. Hahn, foram mantidos sob custódia na Inglaterra. Gravações secretas dos diálogos mantidos por esses cientistas indicaram que o programa nuclear nazista não fôra capaz de gerar um reator nuclear auto sustentável e que eles estavam confusos sobre as diferenças entre um reator e uma bomba atômica na quadra de squash da Universidade de Chicago, construído sob a supervisão do físico italiano Enrico Fermi. A conversão da reação controlada no reator em um armamento foi realizada nos laboratórios secretos de Los Alamos (Novo México - EUA), sob o comando de J. Robert Oppenheimer. Em 16 de julho de 1945 foi realizado o primeiro teste com uma bomba atô- mica no deserto de Alamogordo. Em função da enorme demonstração de potencial destrutivo, Leo Szilard enviou ao presidente dos EUA uma petição assinada por inúmeros cientistas que exigia controle internacional das armas atômicas. Segundo Szilard: ‘’O maior perigo imediato é a probabilidade de que nossa demonstração de bombas atômicas precipite uma corrida na produção desses artefatos entre os Estados Unidos e a Rússia.’’

Em 1945, as explosões de duas bombas atômicas tiveram como consequência à rendição do Japão e ao final da Segunda Guerra Mundial. Em 6 de agosto, estima-se que 80 mil pessoas morreram na explosão de uma bomba de urânio em Hiroxima. Três dias depois, outras 40 mil foram vítimas fatais de uma bomba de plutônio em Nagasaqui. Esses números mostram as vítimas diretas das explosões, não entrando na contagem das que vieram a falecer dos males decorrentes da radiação. A conveniência do uso da bomba é questionada até os dias de hoje. Antes do primeiro teste nuclear, a Alemanha já tinha se rendido e a derrota do Japão, apenas com o uso de armamentos convencionais, já estava prevista. Entretanto, para os EUA, a bomba representou muito mais do que a vitória na guerra:  foi tida como uma demonstração de poder. Segundo o historiador Paulo G.F. Vizentini: ‘’ As bombas atômicas lançadas sobre um Japão à beira da rendição eram militarmente desnecessárias. Foram, na verdade, forma de mostrar força diante dos soviéticos e dos movimentos de libertação nacional que amadureciam na China, Coréia e países do Sudoeste Asiático.’’

Radioatividade na Guerra Fria

Como consequência da ordem mundial estabelecida no pós-guerra, teve início a Guerra Fria (1947-1989), na qual os EUA e a URSS passaram a disputar a supremacia mundial. Nessa competição, o desenvolvimento tecnológico foi usado como demonstração de prestígio e poder, e tiveram início duas corridas: armamentista e espacial. Diante da repercussão da bomba atômica, em 1949 os soviéticos explodiram seu primeiro armamento nuclear. O seu programa nuclear, que havia sido interrompido durante os ataques nazistas, foi retomado quando Josef Stalin tomou ciência dos possíveis avanços tecnológicos da Alemanha e dos Estados Unidos. A capacidade de os soviéticos terem desenvolvido a bomba a partir de seus próprios recursos foi posta em cheque com a prisão de Klaus Fuchs, cientista alemão que participou do Projeto Manhattan e que confessou ter passado informações do programa atômico norte-americano aos russos. Nos EUA, em plena época do macartismo, o casal Julius e Ethel Rosenberg, intermediários na transmissão das informações fornecidas por Fuchs, foi condenado à morte. Como os soviéticos já possuíam a bomba atômica, os EUA investiram na criação da bomba de hidrogênio (1952), sendo novamente alcançados pela URSS no ano seguinte. Por sua vez, na corrida espacial os soviéticos largaram na frente e surpreenderam seus adversários com o lançamento do Sputinik e a célebre frase “a Terra é azul”, de Yuri Gagarin (primeiro homem em órbita terrestre – 1961). Os Estados Unidos só conseguiram superar a União Soviética em 1969, com a chegada à Lua dos astronautas da Apollo XI. Com o tempo, outros países dominaram a tecnologia e realizaram seus testes nucleares: Inglaterra (1952), França (1960) e China (1964). À medida que se ampliavam os arsenais nucleares, aumentava o risco de extinção da humanidade em uma guerra nuclear. Esse temor desencadeou a oposição da opinião pública. Campanhas pelo desarmamento e pelo fim dos testes nucleares foram lançadas em todas as partes do mundo. Em meio a incontáveis conferências, diversos tratados anti nucleares foram assinados e, muitas vezes, desrespeitados. Somente com o final da Guerra Fria e a desestruturação da União Soviética (1989), o receio do holocausto nuclear foi temporariamente suavizado.

Usinas e acidentes nucleares

Na década de 50, o aproveitamento racional da energia nuclear possibilitou a criação das usinas nucleares. Segundo Goldemberg (1998) ‘’o uso da potência nuclear para a produção de eletricidade foi um subproduto do desenvolvimento dos reatores nucleares com fins militares durante e após a Segunda Guerra Mundial.’’ As usinas nucleares surgiram como uma fonte poderosa para atender à demanda de energia; não requeriam características geográficas específicas ou áreas extensas (como as hidrelétricas) e não utilizavam combustíveis fósseis ou poluíam a atmosfera (como as termelétricas). Mas havia os altos custos de construção e manutenção, os riscos de acidentes e os perigosos rejeitos radioativos. Na década de 80, o medo de um holocausto nuclear foi desviado das bombas para acidentes nas centenas de usinas espalhadas pelo mundo. Dois acidentes foram decisivos para o questionamento da segurança nessas usinas. O primeiro ocorreu em Three-Mile Island (EUA), em 1979, onde uma falha no sistema de refrigeração acarretou a liberação de uma quantidade de radioatividade. A rápida evacuação da população ao redor da usina evitou a ocorrência de vítimas fatais. Em 1986, em Chernobyl (Ucrânia – URSS), o descontrole da reação provocou um incêndio no núcleo do reator e consequente liberação de grande quantidade de material radioativo na atmosfera. Faltando um edifício protetor, a nuvem radioativa espalhou-se pela Europa e contaminou plantações, animais e seres humanos. Os países ocidentais só tomaram ciência do acidente quando a radiação liberada acionou os alarmes de uma usina nuclear sueca, situada a 2 mil km de distância. Com o intuito de poupar seu prestígio tecnológico, o governo soviético só admitiu o acidente 48 horas após o ocorrido, fato que acabou por retardar a ajuda internacional. Devido ao lançamento de isótopos radioativos de iodo na atmosfera, na década de 1990 verificou-se um aumento substancial na incidência de câncer de tireoide em crianças nas regiões próximas ao local do acidente, na Ucrânia e em Belarus (Stone, 2001). Em função de mobilizações populares, muitos países começaram a desativar seus programas nucleares. Nos EUA, depois de Three-Mile Island, 21 dos 125 reatores foram desligados. Na Europa, após Chernobyl, apenas três reatores foram inaugurados. Mesmo com todos esses esforços, chegou-se ao final do século XX com 130 mil toneladas de lixo nuclear. Devido à contínua emissão de radiação, esse material deve ser isolado até que a radiação atinja níveis toleráveis, o que pode levar alguns milênios. Desta forma, os atuais locais de armazenamento (minas, montanhas e subterrâneos) demonstram-se inseguros devido às incertezas quanto às condições geológicas no longo prazo (Helene, 1996). No Brasil, a energia nuclear também foi alvo de investimentos, que culminaram com a implantação de um complexo nuclear em Angra dos Reis (RJ), durante o regime militar. Após 23 anos de obras e um custo cinco vezes maior que o previsto, as duas primeiras unidades (Angra I e II, pois Angra III ainda está em construção) geram 2% da energia elétrica nacional. Em 1987, o Brasil entrou para a lista dos acidentes radioativos. Em Goiânia, dois catadores de lixo encontraram uma cápsula contendo césio-137 abandonada em um hospital desativado e venderam-na para um ferro velho. O rompimento da blindagem protetora acarretou a liberação do material radioativo. Por desconhecimento da população, a livre manipulação contaminou várias dezenas de pessoas, das quais quatro faleceram nos dias seguintes. Nos anos subsequentes, várias outras vítimas faleceram como resultado da exposição à radiação do césio.


http://web.ccead.puc-rio.br/condigital/mvsl/Sala%20de%20Leitura/conteudos/SL_radiacoes_riscos_e_beneficios.pdf

https://www.scribd.com/document/74567224/TEXTO-Radiacoes-Riscos-e-Beneficios

https://www.scribd.com/document/175271006/Radioatividade-e-Historia-do-Tempo-Presente