Abrir menu principal

Efeito fotoelétrico

(Redirecionado de Efeito fotoeléctrico)
Question book-4.svg
Esta página ou secção cita fontes confiáveis e independentes, mas que não cobrem todo o conteúdo, o que compromete a verificabilidade (desde janeiro de 2013). Por favor, insira mais referências no texto. Material sem fontes poderá ser removido.
Encontre fontes: Google (notícias, livros e acadêmico)
Representação esquemática do efeito fotoelétrico

O efeito fotoelétrico é a emissão de elétrons por um material, geralmente metálico, quando exposto a uma radiação eletromagnética (como a luz) de frequência suficientemente alta, que depende do material, como por exemplo a radiação ultravioleta. Ele pode ser observado quando a luz incide numa placa de metal, arrancando elétrons da placa. Os elétrons ejetados são denominados fotoelétrons.[1]

Observado pela primeira vez por A. E. Becquerel em 1839 e confirmado por Heinrich Hertz em 1887,[2] o fenômeno é também conhecido por "efeito Hertz",[3][4] não sendo porém este termo de uso comum.

De acordo com a teoria eletromagnética clássica, o efeito fotoelétrico poderia ser atribuído à transferência de energia da luz para um elétron. Nessa perspectiva, uma alteração na intensidade da luz induziria mudanças na energia cinética dos elétrons emitidos do metal. Além disso, de acordo com essa teoria, seria esperado que uma luz suficientemente fraca mostrasse um intervalo de tempo entre o brilho inicial de sua luz e a emissão subsequente de um elétron. No entanto, os resultados experimentais não se correlacionaram com nenhuma das duas previsões feitas pela teoria clássica.

Em vez disso, os elétrons são desalojados apenas pelo impacto dos fótons quando esses fótons atingem ou excedem uma frequência limite (energia). Abaixo desse limite, nenhum elétron é emitido do material, independentemente da intensidade da luz ou do tempo de exposição à luz (raramente, um elétron irá escapar absorvendo dois ou mais quanta; no entanto, isso é extremamente raro porque ao absorver quanta suficiente para escapar, o elétron provavelmente terá emitido o resto dos quanta absorvidos). Para dar sentido ao fato de que a luz pode ejetar elétrons mesmo que sua intensidade seja baixa, Albert Einstein propôs que um feixe de luz não é uma onda que se propaga através do espaço, mas uma coleção de pacotes de ondas discretas (fótons), cada um com energia. Isso esclareceu a descoberta anterior de Max Planck da relação de Planck (E = hν), ligando energia (E) e frequência (ν) como decorrentes da quantização de energia. O fator h é conhecido como a constante de Planck.[5][6][1] A explicação satisfatória para o efeito fotoelétrico, dada em 1905 por Albert Einstein, deu ao cientista alemão o prêmio Nobel de Física de 1921.

Tomemos um exemplo: a luz vermelha de baixa frequência estimula os elétrons para fora de uma peça de metal; na visão clássica, a luz é uma onda contínua cuja energia está espalhada sobre a onda. Todavia, quando a luz fica mais intensa, mais elétrons são ejetados, contradizendo, assim a visão da física clássica que sugere que os mesmos deveriam se mover mais rápido (energia cinética) do que as ondas incidentes.

Quando a luz incidente é de cor azul, essa mudança resulta em elétrons muito mais rápidos. A razão é que a luz pode se comportar não apenas como ondas contínuas, mas também como feixes discretos de energia chamados de fótons. Um fóton azul, por exemplo, contém mais energia do que um fóton vermelho. Assim, o fóton azul age essencialmente como uma "bola de bilhar" com mais energia, desta forma transmitindo maior movimento a um elétron. Esta interpretação corpuscular da luz também explica por que a maior intensidade aumenta o número de elétrons ejetados - com mais fótons colidindo no metal, mais elétrons têm probabilidade de serem atingidos.

Aumentar a intensidade de radiação que provoca o efeito fotoelétrico não aumenta a velocidade dos fotoelétrons, mas aumenta o número de fotoelétrons. Para se aumentar a velocidade dos fotoelétrons, é necessário excitar a placa com radiações de frequências maiores e, portanto, energias mais elevadas.[1]

Índice

EquaçõesEditar

Analisando o efeito fotoelétrico quantitativamente usando o método de Einstein, as seguintes equações equivalentes são usadas:

Energia do fóton = Energia necessária para remover um elétron + Energia cinética do elétron emitido

 Mais detalhes em: Energia do fóton

Algebricamente:

 

Onde:

  • h é a constante de Planck,
  • f é a frequência do foton incidente,
  •   é a função trabalho, ou energia mínima exigida para remover um elétron de sua ligação atômica,
  •   é a energia cinética máxima dos elétrons expelidos,
  • f0 é a frequência mínima para o efeito fotoelétrico ocorrer,
  • m é a massa de repouso do elétron expelido, e
  • vm é a velocidade dos elétrons expelidos.

Notas:

Se a energia do fóton (hf) não é maior que a função trabalho ( ), nenhum elétron será emitido. A função trabalho é ocasionalmente designada por  .
Em física do estado sólido costuma-se usar a energia de Fermi e não a energia de nível de vácuo como referencial nesta equação, o que faz com que a mesma adquira uma forma um pouco diferente.
Note-se ainda que ao aumentar a intensidade da radiação incidente não vai causar uma maior energia cinética dos elétrons (ou electrões) ejectados, mas sim um maior número de partículas deste tipo removidas por unidade de tempo.

AplicaçõesEditar

  • Controle Remoto

Os controles remotos, games e artifícios digitais estão cada vez mais presentes nessa era considerada digital, então é viável e interessante que o Efeito Fotoelétrico seja observado, para uma melhor a compreensão, através de um simulador. O controle remoto, por exemplo, pode ser associado à fonte de luz presente no simulador, pois emite um feixe de luz de determinada frequência que aciona o dispositivo fotossensível presente nos aparelhos controlados por ele.[7]

  • Cinema

Graças ao efeito fotoelétrico, tornou-se possível o cinema falado, assim como a transmissão de imagens animadas (televisão). O emprego de aparelhos fotoelétricos permitiu construir uma maquinaria capaz de produzir peças sem intervenção alguma do homem. Os aparelhos cujos funcionamentos se assentam no aproveitamento do efeito fotoelétrico controlam o tamanho das peças melhor do que pode fazer qualquer operário, permitem acender e desligar automaticamente a iluminação de ruas, os faróis, etc. Tudo isto se tornou possível devido à invenção de aparelhos especiais, chamados células fotoelétricas, em que a energia da luz controla a energia da corrente elétrica ou se transforma em corrente elétrica[8]

  • Visão Noturna

O equipamento de visão noturna economicamente mais acessível, mais leve, menor, mais ergonométrico, mais confiável, com campo de visão maior, com alto desempenho sob baixas condições de iluminação e que possa ser utilizado tanto de noite quanto de dia atualmente é feito com Tubos Intensificadores de Imagem (TII). Os intensificadores de luz baseiam-se no efeito fotoelétrico demonstrado por Albert Einstein em 1905, no qual um fóton ao incidir sobre determinados materiais é capaz de provocar a emissão de um elétron, denominado fotoelétron. Este efeito fotoelétrico ocorre justamente no fotocatodo. Portanto, a luz (fótons) que chega(m) ao fotocatodo é(são) convertida(os) em fotoelétrons. Estes fotoelétrons são acelerados pelo campo elétrico e para os TIl da 2ª geração em diante são multiplicados na placa de microcanais. Esta multiplicação de elétrons ocorre da seguinte forma: o campo elétrico existente entre o fotocatodo e a placa de microcanais direciona os elétrons para a placa, de modo que ao entrarem nos microcanais colidem com as paredes semicondutoras. Esta colisão gera elétrons secundários que caminham dentro dos microcanais sob influência de um intenso campo elétrico aplicado ao longo dos microcanais. Mais colisões geram mais elétrons e este efeito de avalanche produz o ganho (amplificação) do TIl. Quando alcançam o final da placa de microcanais, os elétrons são acelerados através de uma pequena separação até atingirem a tela de fósforo. Na tela de fósforo os elétrons multiplicados colidem com alta energia e são convertidos em fótons, gerando uma imagem. Após a tela de fósforo está a janela de fibras ópticas, que conduz a imagem gerada para a posição focal desejada pelo restante do sistema óptico, e, quando necessário, inverte a imagem.[9]

Referências

  1. a b c Barros Lima, Gielton (2012). Física, 3ª série: ensino médio: revisional. Belo Horizonte: Editora Educacional. p. 247. ISBN 978-85-7932-512-0 
  2. YOUNG, Hugh D.; FREEDMAN, Roger A. (2016). Física. Ótica e Física Moderna. 4 14 ed. São Paulo: Pearson. p. 202-209. ISBN 978-85-430-0671-0 
  3. The American journal of science. New Haven : J.D. & E.S. Dana. 1880, p. 234
  4. Weisstein, Eric W., "Eric Weisstein's World of Physics", 2007, Eric Weisstein's World of Science, Wolfram Research
  5. Serway, R. A. (1990). Physics for Scientists & Engineers 3rd ed. [S.l.]: Saunders. p. 1150. ISBN 0-03-030258-7 
  6. Sears, F. W.; Zemansky, M. W.; Young, H. D. (1983). University Physics 6th ed. [S.l.]: Addison-Wesley. pp. 843–844. ISBN 0-201-07195-9 
  7. FRANÇA, Claudiely Stresser Machado de. Física moderna no ensino médio: uma atividade para o ensino do efeito fotoelétrico. In: Congresso Nacional de Educação – EDUCERE, 12., 2015, Curitiba. Anais do XII Congresso Nacional de Educação – EDUCERE, III Seminário Internacional de Representações Sociais, Subjetividade e Educação – SIRSSE, IX Encontro Nacional Sobre Atendimento Escolar Hospitalar - I Congresso Nacional Sobre o Atendimento Pedagógico ao Escolar em Tratamento de Saúde – APETS. Curitiba: Desconhecido, 2015, p. 27743-27752
  8. COSTA, Bruno Henrique Matos da. Uma aula sobre o efeito fotoelétrico para o ensino médio. Rio de Janeiro: [s.n.], 2005. 42 p.
  9. DEMENICES, L.S.; CORDEIRO, M.C.R. Visão noturna e o princípio de intensificação de luz residual. Revista militar de ciência e tecnologia. [s.l.], v.18, p. 72-105, 2001

Ver tambémEditar