Cálculo fraccional de conjuntos
O Cálculo Fraccional de Conjuntos (Fractional Calculus of Sets (FCS)), mencionado pela primeira vez no artigo intitulado "Sets of Fractional Operators and Numerical Estimation of the Order of Convergence of a Family of Fractional Fixed-Point Methods",[1] é uma metodologia derivada do Cálculo Fraccional.[2] O conceito principal por trás do FCS é a caracterização dos elementos do cálculo fraccional usando conjuntos devido à grande quantidade de operadores fraccionales disponíveis.[3][4][5] Essa metodologia surgiu a partir do desenvolvimento do método de Newton-Raphson Fraccional[6] e trabalhos relacionados subsequentes.[7][8][9]
Conjunto de Operadores Fraccionales
editarO cálculo fraccional, um ramo da matemática que lida com derivadas de ordem não inteira, surgiu quase simultaneamente com o cálculo tradicional. Esse surgimento foi em parte devido à notação de Leibniz para derivadas de ordem inteira: . Graças a essa notação, L’Hopital pôde perguntar em uma carta a Leibniz sobre a interpretação de tomar em uma derivada. Naquela época, Leibniz não conseguiu fornecer uma interpretação física ou geométrica para essa pergunta, então simplesmente respondeu a L’Hopital em uma carta que "... é uma aparente paradoxo do qual, algum dia, surgirão consequências úteis".
O nome "cálculo fraccional" origina-se de uma pergunta histórica, já que este ramo da análise matemática estuda derivadas e integrais de uma certa ordem . Atualmente, o cálculo fraccional carece de uma definição unificada do que constitui uma derivada fraccional. Consequentemente, quando não é necessário especificar explicitamente a forma de uma derivada fraccional, tipicamente é denotada da seguinte forma:
Os operadores fraccionales têm várias representações, mas uma de suas propriedades fundamentais é que recuperam os resultados do cálculo tradicional à medida que . Considerando uma função escalar e a base canônica de denotada por , o seguinte operador fraccional de ordem é definido usando a notação de Einstein:[10]
Denotando como a derivada parcial de ordem com respeito ao componente -ésimo do vetor , define-se o seguinte conjunto de operadores fraccionales:
cujo complemento é:
Como consequência, define-se o seguinte conjunto:
Extensão para Funções Vetoriais
editarPara uma função , o conjunto é definido como:
onde denota o -ésimo componente da função .
Conjunto de Operadores Fraccionales
editarO conjunto de operadores fraccionales considerando ordens infinitas é definido como:
onde sob o produto de Hadamard [11] clássico temos que:
Operadores Matriciais Fraccionales
editarPara cada operador , o operador matricial fraccional é definido como:
e para cada operador , pode-se definir a seguinte matriz, correspondente a uma generalização da matriz Jacobiana:[12]
onde .
Produto de Hadamard Modificado
editarConsiderando que, em geral, , define-se o seguinte produto de Hadamard modificado:
com o qual se obtém o seguinte teorema:
Teorema: Grupo Abeliano de Operadores Matriciais Fraccionales
editarSeja um operador fraccional tal que . Considerando o produto de Hadamard modificado, define-se o seguinte conjunto de operadores matriciais fraccionales:
que corresponde ao grupo Abeliano [13] gerado pelo operador .
Demonstração
editarDado que o conjunto na equação (1) é definido aplicando apenas o produto de Hadamard tipo vertical entre seus elementos, para todos tem-se que:
com o qual é possível demonstrar que o conjunto (1) satisfaz as seguintes propriedades de um grupo Abeliano:
Conjunto de Operadores Fraccionales
editarSeja o conjunto . Se e , então é possível definir a seguinte notação multi-índice:
Então, considerando uma função e o operador fraccional:
define-se o seguinte conjunto de operadores fraccionales:
De onde se obtêm os seguintes resultados:
Como consequência, considerando uma função , define-se o seguinte conjunto de operadores fraccionales:
Conjunto de Operadores Fraccionales
editarConsiderando uma função e o seguinte conjunto de operadores fraccionales:
Então, tomando uma bola , é possível definir o seguinte conjunto de operadores fraccionales:
o qual permite generalizar a expansão em série de Taylor de uma função vetorial em notação multi-índice. Como consequência, é possível obter o seguinte resultado:
Método de Newton-Raphson Fraccional
editarSeja uma função com um ponto tal que . Então, para algum e um operador fraccional , é possível definir um tipo de aproximação linear da função ao redor de da seguinte maneira:
o que pode ser expresso de forma mais compacta como:
onde denota uma matriz quadrada. Por outro lado, se e dado que , infere-se o seguinte:
Como consequência, definindo a matriz:
é possível definir o seguinte método iterativo fraccional:
que corresponde ao caso mais geral do método de Newton-Raphson fraccional.
O uso de operadores fraccionales em métodos de ponto fixo tem sido amplamente estudado e citado em várias fontes acadêmicas. Exemplos disso podem ser encontrados em vários artigos publicados em revistas renomadas, como os apresentados em ScienceDirect [14], [15], Springer [16], World Scientific [17], e MDPI [18], [19], [20], [21], [22], [23], [24], [25] . Estudos também estão incluídos de Taylor & Francis (Tandfonline) [26] , Cubo [27] , Revista Mexicana de Ciencias Agrícolas [28], Journal of Research and Creativity [29], MQR [30] , e Актуальные вопросы науки и техники [31]. Estes trabalhos destacam a relevância e aplicabilidade dos operadores fraccionales na solução de problemas.
Referências
- ↑ Sets of Fractional Operators and Numerical Estimation of the Order of Convergence of a Family of Fractional Fixed-Point Methods
- ↑ Applications of fractional calculus in physics
- ↑ A review of definitions for fractional derivatives and integral
- ↑ A review of definitions of fractional derivatives and other operators
- ↑ How many fractional derivatives are there?
- ↑ Fractional Newton-Raphson Method
- ↑ Acceleration of the order of convergence of a family of fractional fixed-point methods and its implementation in the solution of a nonlinear algebraic system related to hybrid solar receivers
- ↑ Code of a multidimensional fractional quasi-Newton method with an order of convergence at least quadratic using recursive programming
- ↑ Sets of Fractional Operators and Some of Their Applications
- ↑ Einstein summation for multidimensional arrays
- ↑ The hadamard product
- ↑ Jacobians of matrix transformation and functions of matrix arguments
- ↑ Abelian groups
- ↑ Shams, M.; Kausar, N.; Agarwal, P.; Jain, S. (2024). Fuzzy fractional Caputo-type numerical scheme for solving fuzzy nonlinear equations. Col: Fractional Differential Equations. [S.l.: s.n.] pp. 167–175. doi:10.1016/B978-0-44-315423-2.00016-3
- ↑ Shams, M.; Kausar, N.; Agarwal, P.; Edalatpanah, S.A. (2024). Fractional Caputo-type simultaneous scheme for finding all polynomial roots. Col: Recent Trends in Fractional Calculus and Its Applications. [S.l.: s.n.] pp. 261–272. doi:10.1016/B978-0-44-318505-2.00021-0
- ↑ Al-Nadhari, A.M.; Abderrahmani, S.; Hamadi, D.; Legouirah, M. (2024). «The efficient geometrical nonlinear analysis method for civil engineering structures». Asian Journal of Civil Engineering. 25 (4): 3565–3573. doi:10.1007/s42107-024-00996-z
- ↑ Shams, M.; Kausar, N.; Samaniego, C.; Agarwal, P.; Ahmed, S.F.; Momani, S. (2023). «On efficient fractional Caputo-type simultaneous scheme for finding all roots of polynomial equations with biomedical engineering applications». Fractals. 31 (04). 2340075 páginas. doi:10.1142/S0218348X23400753
- ↑ Wang, X.; Jin, Y.; Zhao, Y. (2021). «Derivative-free iterative methods with some Kurchatov-type accelerating parameters for solving nonlinear systems». Symmetry. 13 (6). 943 páginas. doi:10.3390/sym13060943
- ↑ Tverdyi, D.; Parovik, R. (2021). «Investigation of Finite-Difference Schemes for the Numerical Solution of a Fractional Nonlinear Equation». Fractal and Fractional. 6 (1). 23 páginas. doi:10.3390/fractalfract6010023
- ↑ Tverdyi, D.; Parovik, R. (2022). «Application of the fractional Riccati equation for mathematical modeling of dynamic processes with saturation and memory effect». Fractal and Fractional. 6 (3). 163 páginas. doi:10.3390/fractalfract6030163
- ↑ Srivastava, H.M. (2023). «Editorial for the Special Issue "Operators of Fractional Calculus and Their Multidisciplinary Applications"». Fractal and Fractional. 7 (5). 415 páginas. doi:10.3390/fractalfract7050415
- ↑ Shams, M.; Carpentieri, B. (2023). «Efficient inverse fractional neural network-based simultaneous schemes for nonlinear engineering applications». Fractal and Fractional. 7 (12). 849 páginas. doi:10.3390/fractalfract7120849
- ↑ Candelario, G.; Cordero, A.; Torregrosa, J.R.; Vassileva, M.P. (2023). «Solving Nonlinear Transcendental Equations by Iterative Methods with Conformable Derivatives: A General Approach». Mathematics. 11 (11). 2568 páginas. doi:10.3390/math11112568
- ↑ Shams, M.; Carpentieri, B. (2023). «On highly efficient fractional numerical method for solving nonlinear engineering models». Mathematics. 11 (24). 4914 páginas. doi:10.3390/math11244914
- ↑ Martínez, F.; Kaabar, M.K.A.; Martínez, I. (2024). «Novel Results on Legendre Polynomials in the Sense of a Generalized Fractional Derivative». Mathematical and Computational Applications. 29 (4). 54 páginas. doi:10.3390/mca29040054
- ↑ Shams, M.; Kausar, N.; Agarwal, P.; Jain, S.; Salman, M.A.; Shah, M.A. (2023). «On family of the Caputo-type fractional numerical scheme for solving polynomial equations». Applied Mathematics in Science and Engineering. 31 (1). 2181959 páginas. doi:10.1080/27690911.2023.2181959
- ↑ Nayak, S.K.; Parida, P.K. (2024). «Global convergence analysis of Caputo fractional Whittaker method with real world applications». Cubo (Temuco). 26 (1): 167–190. doi:10.56754/0719-0646.2601.167
- ↑ Rebollar-Rebollar, S.; Martínez-Damián, M.Á.; Hernández-Martínez, J.; Hernández-Aguirre, P. (2021). «Óptimo económico em uma função Cobb-Douglas bivariada: uma aplicação à pecuária de carne semi extensiva». Revista mexicana de ciencias agrícolas. 12 (8): 1517–1523. doi:10.29312/remexca.v12i8.2915
- ↑ Mogro, M.F.; Jácome, F.A.; Cruz, G.M.; Zurita, J.R. (2024). «Sorting Line Assisted by A Robotic Manipulator and Artificial Vision with Active Safety». Journal of Robotics and Control (JRC). 5 (2): 388–396. doi:10.18196/jrc.v5i2.20327
- ↑ Luna-Fox, S.B.; Uvidia-Armijo, J.H.; Uvidia-Armijo, L.A.; Romero-Medina, W.Y. (2024). «Exploração comparativa dos métodos numéricos de Newton-Raphson e bissecção para a resolução de equações não lineares». MQRInvestigar. 8 (2): 642–655. doi:10.56048/MQR20225.8.2.2024.642-655
- ↑ Tvyordyj, D.A.; Parovik, R.I. (2022). «Mathematical modeling in MATLAB of solar activity cycles according to the growth-decline of the Wolf number». Vestnik KRAUNC. Fiziko-Matematicheskie Nauki. 41 (4): 47–64. doi:10.26117/2079-6641-2022-41-4-47-65
Bibliografia
editar- Torres-Hernandez, A.; Brambila-Paz, F. Sets of Fractional Operators and Numerical Estimation of the Order of Convergence of a Family of Fractional Fixed-Point Methods. Fractal Fract. 2021, 5, 240. DOI: 10.3390/fractalfract5040240
- Oliveira, E.C.D.; Machado, J.A.T. A review of definitions for fractional derivatives and integral. Math. Probl. Eng. 2014, 2014, 238459. DOI: 10.1155/2014/238459
- Teodoro, G.S.; Machado, J.A.T.; Oliveira, E.C.D. A review of definitions of fractional derivatives and other operators. J. Comput. Phys. 2019, 388, 195–208. DOI: 10.1016/j.jcp.2019.03.008
- Valério, D.; Ortigueira, M.D.; Lopes, A.M. How many fractional derivatives are there? Mathematics 2022, 10, 737. DOI: 10.3390/math10050737
- Torres-Hernandez, A.; Brambila-Paz, F. Fractional Newton-Raphson Method. Appl. Math. Sci. Int. J. (MathSJ) 2021, 8, 1–13. DOI: 10.5121/mathsj.2021.8101
- Torres-Hernandez, A.; Brambila-Paz, F.; Montufar-Chaveznava, R. Acceleration of the order of convergence of a family of fractional fixed-point methods and its implementation in the solution of a nonlinear algebraic system related to hybrid solar receivers. Applied Mathematics and Computation 2022, Volume 429, 127231. DOI: 10.1016/j.amc.2022.127231
- Torres-Hernandez, A. Code of a multidimensional fractional quasi-Newton method with an order of convergence at least quadratic using recursive programming. Appl. Math. Sci. Int. J. (MathSJ) 2022, 9, 17–24. DOI: 10.5121/mathsj.2022.9103
- Torres-Hernandez, A.; Brambila-Paz, F.; Ramirez-Melendez, R. Sets of Fractional Operators and Some of Their Applications. Em Operator Theory, IntechOpen, 2022. DOI: 10.5772/intechopen.107263
- Shams, M.; Kausar, N.; Agarwal, P.; Jain, S. Fuzzy fractional Caputo-type numerical scheme for solving fuzzy nonlinear equations. Fractional Differential Equations 2024, 167–175. DOI: 10.1016/B978-0-44-315423-2.00016-3
- Shams, M.; Kausar, N.; Agarwal, P.; Edalatpanah, S.A. Fractional Caputo-type simultaneous scheme for finding all polynomial roots. Recent Trends in Fractional Calculus and Its Applications 2024, 261–272. DOI: 10.1016/B978-0-44-318505-2.00021-0
- Al-Nadhari, A.M.; Abderrahmani, S.; Hamadi, D.; Legouirah, M. The efficient geometrical nonlinear analysis method for civil engineering structures. Asian Journal of Civil Engineering 2024, 25(4), 3565–3573. DOI: 10.1007/s42107-024-00996-z
- Shams, M.; Kausar, N.; Samaniego, C.; Agarwal, P.; Ahmed, S.F.; Momani, S. On efficient fractional Caputo-type simultaneous scheme for finding all roots of polynomial equations with biomedical engineering applications. Fractals 2023, 31(04), 2340075. DOI: 10.1142/S0218348X23400753
- Wang, X.; Jin, Y.; Zhao, Y. Derivative-free iterative methods with some Kurchatov-type accelerating parameters for solving nonlinear systems. Symmetry 2021, 13(6), 943. DOI: 10.3390/sym13060943
- Shams, M.; Kausar, N.; Agarwal, P.; Jain, S. Fuzzy fractional Caputo-type numerical scheme for solving fuzzy nonlinear equations. Fractional Differential Equations 2024, 167–175. DOI: 10.1016/B978-0-44-315423-2.00016-3
- Shams, M.; Kausar, N.; Agarwal, P.; Edalatpanah, S.A. Fractional Caputo-type simultaneous scheme for finding all polynomial roots. Recent Trends in Fractional Calculus and Its Applications 2024, 261–272. DOI: 10.1016/B978-0-44-318505-2.00021-0
- Al-Nadhari, A.M.; Abderrahmani, S.; Hamadi, D.; Legouirah, M. The efficient geometrical nonlinear analysis method for civil engineering structures. Asian Journal of Civil Engineering 2024, 25(4), 3565–3573. DOI: 10.1007/s42107-024-00996-z
- Shams, M.; Kausar, N.; Samaniego, C.; Agarwal, P.; Ahmed, S.F.; Momani, S. On efficient fractional Caputo-type simultaneous scheme for finding all roots of polynomial equations with biomedical engineering applications. Fractals 2023, 31(04), 2340075. DOI: 10.1142/S0218348X23400753
- Wang, X.; Jin, Y.; Zhao, Y. Derivative-free iterative methods with some Kurchatov-type accelerating parameters for solving nonlinear systems. Symmetry 2021, 13(6), 943. DOI: 10.3390/sym13060943
- Tverdyi, D.; Parovik, R. Investigation of Finite-Difference Schemes for the Numerical Solution of a Fractional Nonlinear Equation. Fractal and Fractional 2021, 6(1), 23. DOI: 10.3390/fractalfract6010023
- Tverdyi, D.; Parovik, R. Application of the fractional Riccati equation for mathematical modeling of dynamic processes with saturation and memory effect. Fractal and Fractional 2022, 6(3), 163. DOI: 10.3390/fractalfract6030163
- Srivastava, H.M. Editorial for the Special Issue “Operators of Fractional Calculus and Their Multidisciplinary Applications”. Fractal and Fractional 2023, 7(5), 415. DOI: 10.3390/fractalfract7050415
- Shams, M.; Carpentieri, B. Efficient inverse fractional neural network-based simultaneous schemes for nonlinear engineering applications. Fractal and Fractional 2023, 7(12), 849. DOI: 10.3390/fractalfract7120849
- Candelario, G.; Cordero, A.; Torregrosa, J.R.; Vassileva, M.P. Solving Nonlinear Transcendental Equations by Iterative Methods with Conformable Derivatives: A General Approach. Mathematics 2023, 11(11), 2568. DOI: 10.3390/math11112568
- Shams, M.; Carpentieri, B. On highly efficient fractional numerical method for solving nonlinear engineering models. Mathematics 2023, 11(24), 4914. DOI: 10.3390/math11244914
- Martínez, F.; Kaabar, M.K.A.; Martínez, I. Novel Results on Legendre Polynomials in the Sense of a Generalized Fractional Derivative. Mathematical and Computational Applications 2024, 29(4), 54. DOI: 10.3390/mca29040054
- Shams, M.; Kausar, N.; Agarwal, P.; Jain, S.; Salman, M.A.; Shah, M.A. On family of the Caputo-type fractional numerical scheme for solving polynomial equations. Applied Mathematics in Science and Engineering 2023, 31(1), 2181959. DOI: 10.1080/27690911.2023.2181959
- Nayak, S.K.; Parida, P.K. Global convergence analysis of Caputo fractional Whittaker method with real world applications. Cubo (Temuco) 2024, 26(1), 167–190. DOI: 10.56754/0719-0646.2601.167
- Rebollar-Rebollar, S.; Martínez-Damián, M.Á.; Hernández-Martínez, J.; Hernández-Aguirre, P. Óptimo económico en una función Cobb-Douglas bivariada: una aplicación a ganadería de carne semi extensiva. Revista mexicana de ciencias agrícolas 2021, 12(8), 1517–1523. DOI: 10.29312/remexca.v12i8.2915
- Mogro, M.F.; Jácome, F.A.; Cruz, G.M.; Zurita, J.R. Sorting Line Assisted by A Robotic Manipulator and Artificial Vision with Active Safety. Journal of Robotics and Control (JRC) 2024, 5(2), 388–396. DOI: 10.18196/jrc.v5i2.20327
- Luna-Fox, S.B.; Uvidia-Armijo, J.H.; Uvidia-Armijo, L.A.; Romero-Medina, W.Y. Exploración comparativa de los métodos numéricos de Newton-Raphson y bisección para la resolución de ecuaciones no lineales. MQRInvestigar 2024, 8(2), 642–655. DOI: 10.56048/MQR20225.8.2.2024.642-655
- Tvyordyj, D.A.; Parovik, R.I. Mathematical modeling in MATLAB of solar activity cycles according to the growth-decline of the Wolf number. Vestnik KRAUNC. Fiziko-Matematicheskie Nauki 2022, 41(4), 47–64. DOI: 10.26117/2079-6641-2022-41-4-47-65