Número piramidal quadrado

Representação de uma pirâmide quadrangular formada por esferas.

Um número piramidal quadrado corresponde ao número de esferas que podem ser alocadas se forem dispostas de forma a formar uma pirâmide quadrangular[1]. Se é o número de esferas que formam o lado da base da pirâmide, então o número piramidal associado é dado por:

Por exemplo, se uma pirâmide quadrangular for formada por esferas na base, então ela terá um total de 30 esferas, o que corresponde a:

.

DemostraçãoEditar

Mostraremos que[1][2]:

 .

Primeiramente, observamos que a diferença entre dois termos consecutivos deste somatório fornece:

 

O que mostra que a diferença entre os quadrados de dois números naturais consecutivos é um número ímpar. Além disso, por indução na equação anterior, vemos que o quadrado de um número natural pode ser escrito como a soma de números ímpares, mais precisamente:

 .

Consideremos, então, a seguinte tabela representativa:

 

Notemos que a primeira coluna após o símbolo de igualdade soma  , a segunda coluna soma  , a terceira soma   e assim, sucessivamente, até a última coluna que soma  . Logo, vemos que:

 .

Agora, pelas propriedades do somatório, temos:

 

Ora, o somatório de   é uma progressão aritmética de razão 1, i.e.  . Logo:

 .

Referências

  1. a b Conway, John H. (1996). The book of numbers. [S.l.]: Springer. ISBN 9780387979939 
  2. Steward, James (2013). Cálculo - Volume 1 7 ed. [S.l.]: Cengage. ISBN 978-8522112586