Espaço topológico quociente

Em topologia, um espaço topológico quociente, X, é definido como, dado uma relação de equivalência, ~, o espaço topológico \(([X], \tau)\), onde \([X]\) denota as classes de equivalencia de X e \tau={U \subset 2^[X]| \união_{[x] \in U} x é aberto em X}.

O quociente de um espaço topológico X por uma relação de equivalência ~ é o conjunto X/~ das classes de equivalência munido da topologia (chamada topologia quociente) cujos abertos são os conjuntos de classes cuja reunião é um aberto de X.

ExemplosEditar

  • O quociente de   pela relação   se   é homeomorfo a  .
  • O quociente de   pela relação de equivalência gerada por   e  , para   é homeomorfo ao toro   que por sua vez é homeomorfo à  .
  • O processo acima, que cola as bordas do quadrado de forma direta, pode ser feito de modo a torcer o quadrado. Assim, a relação de equivalência gerada por   e  , para   gera o plano projectivo, enquanto que a relação de equivalência gerada por   e  , para   gera a garrafa de Klein.

Referências

  Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.