Abrir menu principal

Uma Inequação do 2º Grau é uma inequação que pode ser reduzida à forma:

.

Note que comparar um dos termos a zero é essencial para a resolução de qualquer inequação mais complexa do que a inequação do 1º grau.

Inicialmente, acham-se os zeros da inequação, resolvendo-a como uma equação quadrática. Note que, achando 2 raízes reais, sabe-se que , achando-se 1 raiz real, sabe-se que e não se achando raiz real, sabe-se que . Após isso, observa-se o sinal do coeficiente . Pelo estudo dos sinais da função quadrática, temos que:

Exemplo de uma função positiva para qualquer valor de
Exemplo de uma função negativa para e nula para
Exemplo de uma função positiva para ou ; nula para e negativa para .

Então, separe-se os valores adequados e obtém-se o conjunto-solução.

Praticamente, pode-se esboçar o gráfico da função

,

observando os sinais do coeficiente e do , e selecionando as raízes que cumprem a função. Basta observar para que valores a curva está acima (positivo) ou abaixo (negativo) da abcissa.

ExemplosEditar

  •  . Se  , então   e  . Logo,   (uma vez que se obteve 2 raízes). Como  , então, os valores que fazem   ou   são   ou  
  •  . Se  , então  . Logo,   (uma vez que se obteve 1 raiz). Como  , então, os valores que fazem   ou   são apenas  .
  •  . Se  , então a equação não possui raízes reais. Logo,  . Como  , então não há valores que fazem  .

BibliografiaEditar

  • MURAKAMI, Gelson Iezzi Carlos. "Fundamentos da Matemática Elementar - Volume 1". 8ª Edição. São Paulo: Atual, 2004. ISBN 85-357-0455-8

Ver tambémEditar