Abrir menu principal
Question book-4.svg
Esta página cita fontes confiáveis e independentes, mas que não cobrem todo o conteúdo (desde Junho de 2008). Ajude a inserir referências. Conteúdo não verificável poderá ser removido.—Encontre fontes: Google (notícias, livros e acadêmico)

interpolação é o método de aproximar os valores dos conjuntos discretos.

Exemplo de interpolação linear.
Exemplo de interpolação polinomial de grau superior a 1.

Em matemática, denomina-se interpolação o método que permite construir um novo conjunto de dados a partir de um conjunto discreto de dados pontuais previamente conhecidos.[1]

Em engenharia e ciência, dispõe-se habitualmente de dados pontuais obtidos a partir de uma amostragem ou de um experimento. Tal conjunto de dados pontuais (também denominado conjunto degenerado) não possui continuidade, e isto muitas vezes torna demasiado irreal a representação teórica de um fenômeno real empiricamente observado.

Através da interpolação, pode-se construir uma função que aproximadamente se "encaixe" nestes dados pontuais, conferindo-lhes, então, a continuidade desejada.

Outra aplicação da interpolação é a aproximação de funções complicadas por funções mais simples. Suponha que tenhamos uma função, mas que seja complicada demais para que seja possível avaliá-la de forma eficiente. Podemos, então, escolher alguns dados pontuais da função complicada e tentar interpolá-los com uma função mais simples. Obviamente, quando utilizamos a função mais simples para calcular novos dados, normalmente não se obtém o mesmo resultado da função original, mas dependendo do domínio do problema e do método de interpolação utilizado, o ganho de simplicidade pode compensar o erro.

A interpolação permite fazer a reconstituição (aproximada) de uma função, bastando para tanto conhecer apenas algumas das suas abscissas e respectivas ordenadas (imagens no contra-domínio da função). A função resultante garantidamente passa pelos pontos fornecidos, e, em relação aos outros pontos, pode ser considerada um mero ajuste.

Índice

Tipos de interpolaçãoEditar

Ver tambémEditar

BibliografiaEditar


Referências

  1. interpolação in Dicionário infopédia da Língua Portuguesa sem Acordo Ortográfico [em linha]. Porto: Porto Editora, 2003-2018. [consult. 2018-01-18 18:17:28]. Disponível na Internet: https://www.infopedia.pt/dicionarios/lingua-portuguesa-aao/interpolação
  Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.