Abrir menu principal

Interpolação polinomial

DefiniçãoEditar

Denomina-se interpolação polinomial o processo matemático de interpolação em que a função interpoladora é um polinômio. A função interpoladora é a função  

Definidos um intervalo   e uma função   denomina-se interpolação o processo matemático de avaliar   substituindo-se a função   pela função interpoladora   de modo que   ( ).

Assim,   é a função real, definida em   da qual conhecem-se os valores nos pontos de abcissas   ( ).

Na fase de escolha do processo matemático de interpolação, frequentemente são escolhidos polinómios. Isto porque os polinómios apresentam relativa simplicidade, e também porque permitem representar satisfatoriamente a generalidade das funções que surgem no dia-a-dia.

Métodos de interpolação polinomialEditar

Os métodos de interpolação polinomial diferem, uns dos outros, quanto à técnica de determinação do polinómio interpolador. Os erros de arredondamento diferem em cada caso, pois as operações aritméticas são conduzidas de formas distintas, em cada método.

ExemploEditar

Quer-se achar o polinômio do terceiro grau que interpola a tabela:

x  f(x)
1  -17
2    4
3   71
4  202

Constrói-se o sistema A.X = B

A =
1 1  1  1
1 2  4  8
1 3  9 27
1 4 16 64

Em A, a segunda coluna são os valores de x, a terceira coluna é a segunda ao quadrado e a quarta é a segunda ao cubo.

B =
-17
4
71
202

As raízes deste sistema são os coeficientes do polinômio:

X =
-10
-15
5
3

f(x)=3x³+5x²-15x-10

  Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.