Abrir menu principal

Patologia (matemática)

Question book.svg
Este artigo ou secção não cita fontes confiáveis e independentes (desde Dezembro de 2013). Ajude a inserir referências.
O conteúdo não verificável pode ser removido.—Encontre fontes: Google (notícias, livros e acadêmico)

Em matemática, uma patologia ou exemplo patológico é um exemplo daquilo que não é intuitivamente esperado.

Patologias têm sido utilizadas na matemática para diversos fins:

  • Justificar o formalismo e o rigor.
  • Expor as limitações de certas teorias e justificar teorias mais gerais. A função de Dirichlet, por exemplo, não é integrável no sentido de Riemann mas o é no sentido de Lebesgue.
  • Fornecer contra-exemplo a conjecturas.

A função de WeierstrassEditar

Um exemplo clássico é a construção de Weierstrass de uma função contínua nunca diferenciável. A função de Weierstrass fere o senso comum, pois embora seja uma função contínua, seu gráfico é formado apenas por "quinas".

Conjuntos não-mensuráveisEditar

A existência de conjuntos não mensuráveis à Lebesgue na reta, ou seja, conjuntos aos quais não se pode atribuir um comprimento foram considerados patológicos, o primeiro exemplo conhecido é o conjunto de Vitali.

Na mesma linha, pode-se citar o paradoxo de Banach-Tarski.

  Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.