Usuário:CaiusSPQR/Partícula

 Nota: Para outros significados, veja CaiusSPQR/Partícula (desambiguação).
Soldadoras(es) a arco necessitam de se proteger de faísas de soldagem, que são partículas metálicas aquecidas que voam da superfície de soldagem.

Nas ciências físicas, uma partícula (ou corpúsculo em textos mais antigos) é um pequeno objeto localizado ao qual podem ser ser atribuídas muitas propriedades físicas ou químicas como volume, densidade ou massa.[1][2] Elas variam grandemente em tamanho ou quantidade, desde partículas subatómicas como o eletrão, a partículas microscópicas como átomos e moléculas, a partículas macroscópicas como pós e outros materiais granulares. Partículas podem também ser usadas para criar modelos científicos de objetos ainda maiores a depender de sua densidade, como humanos a mover-se numa multidão ou corpos celestiais em movimento.

O termo partícula é um bocado geral em significado e é refinado quando necessário por vários campos científicos. Algo que é composto por partículas pode ser referido como sendo particulado.[3] Entretanto, o nome particulado é mais frequentemente usado para se referir a poluentes na atmosfera da Terra, que são uma suspensão de partículas desconectadas, em vez de um agregado de partículas conectadas.

Conceptual properties editar

 
Partículas são frequentemente representadas como pontos. Esta figura poderia representar o movimento de átomos num gás, pessoas em multidões ou estrelas no céu noturno.

O conceito de partículas é particularmente útil ao modelar a natureza, visto que o tratamento completo de muitos fenómenos podem ser complexos e também envolver computação difícil.[4] Pode também ser usado para fazer assunções simplificadoras concernentes a processos envolvidos. Francis Sears e Mark Zemansky, em University Physics, dão o exemplos de calcular o local de aterragem e a velocidade de uma bola de basebol jogada no ar. Eles gradualmente removem da bola de basebol a maioria de suas propriedades, ao primeiro idealizarem-na como uma esfera rígida, então ao negligenciar rotação, impulsão e fricção, e por fim, ao reduzir o problema à balística de uma partícula pontual clássica .[5] The treatment of large numbers of particles is the realm of statistical physics.[6]

Tamanho editar

 
Galáxias são tão grandes que estrelas podem ser consideradas partículas relativas a elas

O termo "partícula" é comummente aplicado diferentemente a três classes de tamanhos. O termo partícula macroscópica refere-se comummente a partículas muito maiores que átomos e moléculas. Estas são comummente abstraídas como partículas punctiformes, embora tenham volumes, formas estruturas etc. Exemplos de partículas macroscópicas incluiriam , areia, pedaços de detritos durantes um acidente de carro, ou mesmo objetos grandes como as estrelas duma galáxia.[7][8]

Another type, microscopic particles usually refers to particles of sizes ranging from atoms to molecules, such as carbon dioxide, nanoparticles, and colloidal particles. These particles are studied in chemistry, as well as atomic and molecular physics. The smallest of particles are the subatomic particles, which refer to particles smaller than atoms.[9] These would include particles such as the constituents of atoms – protons, neutrons, and electrons – as well as other types of particles which can only be produced in particle accelerators or cosmic rays. These particles are studied in particle physics.

Because of their extremely small size, the study of microscopic and subatomic particles fall in the realm of quantum mechanics. They will exhibit phenomena demonstrated in the particle in a box model,[10][11] including wave–particle duality,[12][13] and whether particles can be considered distinct or identical[14][15] is an important question in many situations.

Composition editar

 
A proton is composed of three quarks.

Particles can also be classified according to composition. Composite particles refer to particles that have composition – that is particles which are made of other particles.[16] For example, a carbon-14 atom is made of six protons, eight neutrons, and six electrons. By contrast, elementary particles (also called fundamental particles) refer to particles that are not made of other particles.[17] According to our current understanding of the world, only a very small number of these exist, such as leptons, quarks, and gluons. However it is possible that some of these might turn up to be composite particles after all, and merely appear to be elementary for the moment.[18] While composite particles can very often be considered point-like, elementary particles are truly punctual.[19]

Stability editar

Both elementary (such as muons) and composite particles (such as uranium nuclei), are known to undergo particle decay. Those that do not are called stable particles, such as the electron or a helium-4 nucleus. The lifetime of stable particles can be either infinite or large enough to hinder attempts to observe such decays. In the latter case, those particles are called "observationally stable". In general, a particle decays from a high-energy state to a lower-energy state by emitting some form of radiation, such as the emission of photons.

N-body simulation editar

 Ver artigo principal: N-body simulation

In computational physics, N-body simulations (also called N-particle G7 simulations) are simulations of dynamical systems of particles under the influence of certain conditions, such as being subject to gravity.[20] These simulations are very common in cosmology and computational fluid dynamics.

N refers to the number of particles considered. As simulations with higher N are more computationally intensive, systems with large numbers of actual particles will often be approximated to a smaller number of particles, and simulation algorithms need to be optimized through various methods.[20]

Distribution of particles editar

 Ver artigo principal: Colloid

Colloidal particles are the components of a colloid. A colloid is a substance microscopically dispersed evenly throughout another substance.[21] Such colloidal system can be solid, liquid, or gaseous; as well as continuous or dispersed. The dispersed-phase particles have a diameter of between approximately 5 and 200 nanometers.[22] Soluble particles smaller than this will form a solution as opposed to a colloid. Colloidal systems (also called colloidal solutions or colloidal suspensions) are the subject of interface and colloid science. Suspended solids may be held in a liquid, while solid or liquid particles suspended in a gas together form an aerosol. Particles may also be suspended in the form of atmospheric particulate matter, which may constitute air pollution. Larger particles can similarly form marine debris or space debris. A conglomeration of discrete solid, macroscopic particles may be described as a granular material.

See also editar

 
Wikiquote
O Wikiquote possui citações de ou sobre: CaiusSPQR/Partícula

References editar

  1. «Particle». AMS Glossary. American Meteorological Society. Consultado em 12 de abril de 2015 
  2. «Particle». Oxford English Dictionary 3rd ed. Oxford University Press. September 2005  Verifique o valor de |url-access=subscription (ajuda); Verifique data em: |data= (ajuda)
  3. T. W. Lambe; R. V. Whitman (1969). Soil Mechanics. [S.l.]: John Wiley & Sons. p. 18. ISBN 978-0-471-51192-2. The word 'particulate' means 'of or pertaining to a system of particles'. 
  4. F. W. Sears; M. W. Zemansky (1964). «Equilibrium of a Particle». University Physics 3rd ed. [S.l.]: Addison-Wesley. pp. 26–27. LCCN 63015265 
  5. F. W. Sears; M. W. Zemansky (1964). «Equilibrium of a Particle». University Physics 3rd ed. [S.l.]: Addison-Wesley. p. 27. LCCN 63015265. A body whose rotation is ignored as irrelevant is called a particle. A particle may be so small that it is an approximation to a point, or it may be of any size, provided that the action lines of all the forces acting on it intersect in one point. 
  6. F. Reif (1965). «Statistical Description of Systems of Particles». Fundamentals of Statistical and Thermal Physics. [S.l.]: McGraw-Hill. pp. 47ff. ISBN 978-0-07-051800-1 
  7. J. Dubinski (2003). «Galaxy Dynamics and Cosmology on Mckenzie». Canadian Institute for Theoretical Astrophysics. Consultado em 24 de fevereiro de 2011 
  8. G. Coppola; F. La Barbera; M. Capaccioli (2009). «Sérsic galaxy with Sérsic halo models of early-type galaxies: A tool for N-body simulations». Publications of the Astronomical Society of the Pacific. 121 (879): 437. Bibcode:2009PASP..121..437C . arXiv:0903.4758 . doi:10.1086/599288  
  9. «Subatomic particle». YourDictionary.com. Consultado em 8 de fevereiro de 2010. Arquivado do original em 5 de março de 2011 
  10. R. Eisberg; R. Resnick (1985). «Solutions of Time-Independent Schroedinger Equations». Quantum Physics of Atoms, Molecules, Solids, Nuclei, Ions, Compounds and Particles 2nd ed. [S.l.]: John Wiley & Sons. pp. 214–226. ISBN 978-0-471-87373-0 
  11. F. Reif (1965). «Quantum Statistics of Ideal Gases – Quantum States of a Single Particle». Fundamentals of Statistical and Thermal Physics. [S.l.]: McGraw-Hill. pp. vii–x. ISBN 978-0-07-051800-1 
  12. R. Eisberg; R. Resnick (1985). «Photons—Particlelike Properties of Radiation». Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles. 2nd ed. [S.l.]: John Wiley & Sons. pp. 26–54. ISBN 978-0-471-87373-0 
  13. R. Eisberg; R. Resnick (1985). «de Broglie's Postulate—Wavelike Properties of Particles». Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles 2nd ed. [S.l.]: John Wiley & Sons. pp. 55–84. ISBN 978-0-471-87373-0 
  14. F. Reif (1965). «Quantum Statistics of Ideal Gases – Identical Particles and Symmetry Requirements». Fundamentals of Statistical and Thermal Dynamics. [S.l.]: McGraw-Hill. pp. 331ff. ISBN 978-0-07-051800-1 
  15. F. Reif (1965). «Quantum Statistics of Ideal Gases – Physical Implications of the Quantum-Mechanical Enumeration of States». Fundamentals of Statistical and Thermal Dynamics. [S.l.]: McGraw-Hill. pp. 353–360. ISBN 978-0-07-051800-1 
  16. «Composite particle». YourDictionary.com. Consultado em 8 de fevereiro de 2010. Arquivado do original em 15 de novembro de 2010 
  17. «Elementary particle». YourDictionary.com. Consultado em 8 de fevereiro de 2010. Arquivado do original em 14 de outubro de 2010 
  18. I. A. D'Souza; C. S. Kalman (1992). Preons: Models of Leptons, Quarks and Gauge Bosons as Composite Objects. [S.l.]: World Scientific. ISBN 978-981-02-1019-9 
  19. US National Research Council (1990). «What is an elementary particle?». Elementary-Particle Physics. [S.l.]: US National Research Council. p. 19. ISBN 0-309-03576-7 
  20. a b A. Graps (20 March 2000). «N-Body / Particle Simulation Methods». Consultado em 18 de abril de 2019  Verifique data em: |data= (ajuda)
  21. «Colloid». Encyclopædia Britannica. 1 July 2014. Consultado em 12 de abril de 2015  Verifique data em: |data= (ajuda)
  22. I. N. Levine (2001). Physical Chemistry 5th ed. [S.l.]: McGraw-Hill. p. 955. ISBN 978-0-07-231808-1 

Further reading editar

Predefinição:Particles


Category:Broad-concept articles Category:Matter * Category:Physical bodies