Abrir menu principal

Wikipédia β

Question book-4.svg
Esta página ou secção cita fontes fiáveis e independentes, mas que não cobrem todo o conteúdo, o que compromete a verificabilidade (desde agosto de 2010). Por favor, insira mais referências no texto. Material sem fontes poderá ser removido.
Encontre fontes: Google (notícias, livros e acadêmico)
hemoglobina, beta
Hemoglobina em 3D.
Indicadores
HUGO 4827
Entrez 3043
OMIM 141900
RefSeq NM_000518
UniProt P68871
Outros dados
Locus Cr. 11 p15.5
Hemácias.

A hemoglobina (frequentemente abreviada como Hb) é uma metaloproteína que contém ferro presente nos glóbulos vermelhos (eritrócitos) e que permite o transporte de oxigénio pelo sistema circulatório.

Composta de 4 moléculas proteicas de estrutura terciária e 4 grupamentos heme que contém o ferro, cada íon ferro é capaz de se ligar frouxamente a quatro átomos de oxigênio, um para cada molécula de hemoglobina.

Índice

Fórmula químicaEditar

C2952H4664O832S8Fe4 (pH 7)

EstruturaEditar

A hemoglobina é um tetrâmero composto de dois tipos de cadeias de globina. Existem duas cadeias de cada tipo, sendo que um deles contém 141 aminoácidos e o outro contém 146 aminoácidos. Cada cadeia proteica está ligada a um grupo heme; estes possuem um íon de ferro no seu centro, que forma seis ligações coordenadas: quatro com átomos de azoto do grupo planar de porfirina, uma a um átomo de azoto da proteína e outras a uma molécula de oxigênio. É uma proteína alostérica, pois a ligação e a libertação do oxigénio é regulada por mudanças na estrutura provocadas pela própria ligação do oxigénio ao grupo heme.

Esta proteína é quase esférica, tendo aproximadamente 55 Å de diâmetro e massa molecular de aproximadamente 64 000 Da, sendo que nos invertebrados pode variar de 23 600 Da em alguns equinodermes (Thyone sp) a 3 000 000 Da em alguns poliquetas (Arenicola sp e Serpula sp) (Schmidt-Nielsen, 1993).

As cadeias alfa contêm sete alfa-hélices sendo que as cadeias beta possuem oito. Estas hélices são designadas por letras do alfabeto (A a H), sendo interrompidas por segmentos não helicoidais denominados AB, BC e assim por diante. Um pequeno segmento não helicoidal precede a primeira alfa-hélice (N- terminal) e é denominado NA, o segmento após a última alfa hélice (C-terminal) é denominado HC (Perutz, 1984).

Nos vertebrados inferiores (lampreia e peixe-bruxa) a hemoglobina é monomérica quando oxigenada e oligomérica quando desoxigenada (Perutz, 1984). Em vertebrados superiores a Hb é simétrica, isto é, constituída por quatro cadeias iguais duas a duas, codificadas pelos genes alfa e beta mas algumas espécies de peixes podem apresentar hemoglobinas assimétricas e várias iso-Hbs (Dafré et al., 1997; Ohkubo et al., 1993; Masala et al., 1992, Smarra, 1997).

Tipos de hemoglobinaEditar

  • Embrionária:
    • Gower 1 (ξ2ε2)
    • Gower 2 (α2ε2)
    • Hemoglobina de Portland (ζ2γ2)
  • Fetal:
    • Hemoglobina F (α2γ2)
  • Adultos:
    • Hemoglobina A (α2β2) - O tipo mais comum, correspondendo a 95 % da hemoglobina total.
    • Hemoglobina A2 (α2δ2) - cadeias δ são sintetizadas no último trimestre após o parto, seu nível normal é de aproximadamente 2,5 %.
    • Hemoglobina F (α2γ2) - Nos adultos, a hemoglobina F é restrita a uma população de células vermelhas (hemácias), chamadas células F. Este tipo de hemoglobina corresponde a cerca de 2,5 % da hemoglobina total.

Distribuição do oxigénioEditar

A distribuição é feita através da interação da hemoglobina com o oxigênio do ar (que pode ser inspirado ou absorvido, como na respiração cutânea). Devido a isto, forma-se o complexo oxi-hemoglobina, representado pela notação HbO2. Chegando às células do organismo, o oxigênio é libertado e o sangue arterial (vermelho) transforma-se em venoso (vermelho arroxeado). A hemoglobina livre pode ser reutilizada no transporte do dióxido de carbono, apesar de apenas 11% deste gás ser transportado por essa via[1]. A hemoglobina distribui o oxigênio para todas as partes do corpo irrigadas por vasos sanguíneos.

A hemoglobina pode ser encontrada dispersa no sangue (em grupos animais simples) ou em várias células especializadas (as hemácias de animais mais complexos).

O aumento de glóbulos vermelhos no sangue (eritrocitose) resulta de uma adaptação fisiológica do organismo a locais de altitude elevada, como resposta à menor pressão atmosférica e disponibilidade de oxigénio. Uma vez que o aumento de glóbulos vermelhos favorece o transporte de oxigénio pelo sangue, o seu uso melhora a performance de atletas, principalmente nas modalidades de resistência. Quando os atletas realizam treino em locais de alta altitude, a pequena concentração de oxigénio estimula a produção natural de EPO, que aumenta o número de eritrócitos e a capacidade muscular; ao regressar a altitudes menores, o seu corpo está mais preparado e sua resistência é maior.

Metemoglobina (metHb)Editar

             Geralmente, o ferro ligado ao heme permanece em seu estado ferroso (Fe2+) independentemente da ligação do oxigênio à molécula. A ligação do O2 ao ferro II leva a uma mudança eletrônica no átomo, partindo de uma orientação tetraédrica para uma octaédrica. No entanto, a oxidação do ferro a seu estado férrico (Fe3+) faz com que o átomo já esteja em sua orientação octaédrica, mesmo sem a ligação do oxigênio, com uma molécula de H2O ocupando a sexta posição de ligação. Por isso, hemoglobinas (Hb) e mioglobinas (Mb) que possuem hemes ligados a ferro III são incapazes (a princípio, temporariamente) de se ligar ao oxigênio. Hemoglobinas ou mioglobinas incapazes de transportar oxigênio são chamadas meta-hemoglobinas ou metemoglobinas (metHb) e metamioglobinas (metMb), respectivamente. Chamamos de metemoglobinemia o aumento da concentração de metHb nas hemácias. Para evitar danos e otimizar o transporte de oxigênio para os tecidos, os eritrócitos (ou hemácias) têm uma enzima chamada metemoglobina-redutase, que converte à forma ferrosa (Fe2+) a pequena quantidade de metHb que se forma espontaneamente. [2][3]

Hemoglobinas mutantesEditar

Existem mais de 1000 Hbs variantes, e mais de 90% destas resultam em substituições de um único aminoácido na cadeia polipeptídica da globina. A presença de Hb variantes que causam doenças podem ser chamadas de hemoglobinopatias. Existem diversos tipos de variações na hemoglobina, e, dependendo dos locais onde ocorrem, podem ser mais ou menos graves.

As variações nas hemoglobinas que ocorrem por mudança de resíduos superficiais da molécula geralmente são inócuas, devido à falta de função específica de muitos deles (com exceção da anemia falciforme). Exemplo: HbE. Já mudanças em resíduos internos, com frequência desestabilizam a molécula de Hb. A anemia hemolítica, por exemplo, é causada por aumento da permeabilidade da membrana dos eritrócitos. Isso ocorre porque as Hb com resíduos internos desestabilizados são degradadas e formam precipitados, conhecidos como corpúsculos de Heinz, que aderem à membrana das hemácias, causando sua lise prematura.

As modificações nos sítios de ligação do O2 estabilizam o heme no estado férrico (Fe3+) e, portanto, estabilizam a metemoglobina, impedindo a ligação do oxigênio. Essas metHb são denominadas HbM e quem as possui desenvolve um quadro chamado metemoglobinemia. Devido à falta de oxigenação no sangue arterial, os indivíduos que possuem essas alterações são geralmente cianóticos. São exemplos de metemoglobinemia indivíduos que possuem Hb Boston, Hb Milwaukee e Hb Iwate.

Outras variações que implicam no aumento da afinidade por O2 e não na perda de afinidade (como é o caso das metemoglobinemias), também são prejudiciais ao transporte de oxigênio. Geralmente são caracterizadas por alterações na estrutura quaternária da Hb, e, devido à alta afinidade do oxigênio ao heme, o oxigênio não é entregue de forma correta nos tecidos. Indivíduos com essa característica compensam com uma elevação no hematócrito, aumentando a concentração de eritrócitos para suprir as necessidades teciduais. Essa condição é chamada de policitemia. Alterações na estrutura quaternária da hemoglobina também podem resultar em baixa afinidade por O2, causando cianose, como é o caso da Hb Yakima e Hb Kansas. [2][3]

Hemoglobinas de peixesEditar

As hemoglobinas de animais mostram uma grande variedade de comportamentos funcionais decorrentes da gama de ajustes entre as necessidades fisiológicas e disponibilidade ambiental de oxigénio. Este aspecto adquire maior importância quando são analisados os grupos de animais que têm conquistado uma ampla variedade de nichos ecológicos, em particular os animais ectotérmicos, nos quais a temperatura ambiental influencia decisivamente no metabolismo e potencialmente nas propriedades de oxigenação (Smarra, 1997).

Este é o caso dos répteis, entre os quais os ofídios por exemplo, ocupam desde o ambiente marinho até o desértico e apresentam hemoglobinas com comportamento peculiar entre vertebrados (Focesi, et al., 1992; Oyama, et al., 1993). A elevada afinidade das hemoglobinas de ofídios por ATP pode desempenhar um papel protetor contra mudanças significativas da afinidade por oxigénio (Bonilla, et al., 1994 a, b), devido à variação da temperatura ambiental.

Entretanto, as hemoglobinas de peixes têm ocupado um lugar de destaque no estudo das relações entre estrutura e função de hemoglobinas (De Young, et al., 1994), em virtude das estratégias adaptativas desenvolvidas para responder, por exemplo, a grandes variações no suprimento de oxigênio.

A resposta das hemoglobinas de peixes aos efectores heterotrópicos é muito diferente da maioria das hemoglobinas dos mamíferos (Perutz e Brunori, 1982). O ATP e GTP são os fosfatos intraeritrocitários mais comumente encontrados nos peixes, entretanto, existem outros compostos fosfatados como 2,3-BPG inositol pentafosfato e inositol hexafosfato.

Entretanto, estudos em eritrócitos de peixes com respiração aérea acessória obrigatória têm mostrado a presença de pentafosfato de inositol, que diminui a afinidade da Hb por O₂ mais do que o ATP e o GTP. A regulação da afinidade da hemoglobina por O₂, em alguns destes peixes, é dada pela combinação de fosfatos orgânicos intraeritrocitários (Isaacks e Harkness, 1980).

Nos teleósteos (peixes ósseos) os resíduos que participam da ligação de fosfatos orgânicos, apresentam modificações: ácido glutâmico ou aspártico na posição NA2b e arginina na posição H21b (Perutz e Brunori, 1982; Perutz, 1984; Weber e Jansen, 1988). O sangue de peixes pode apresentar ainda um tipo de efeito Bohr alcalino “exagerado”, chamado efeito Root. A peculiaridade deste efeito é que o sangue não está completamente saturado de oxigénio em pH baixo, mesmo a alta pressão de O₂. O papel fisiológico atribuído a esse efeito é o de bombear oxigénio na bexiga natatória e na retina (Farmer, et al., 1979).

As bases moleculares do efeito Root foram resolvidas por Mylvaganan et al (1996).

Referências

  1. «Artigo de apoio Infopédia - transporte de gases respiratórios». www.infopedia.pt. Consultado em 25 de abril de 2017. 
  2. a b Lehninger Principles of Biochemistry (4th Ed.) Nelson, D., and Cox, M.; W.H. Freeman and Company, New York, 2005, ISBN 0-7167-4339-6
  3. a b Voet, D., Voet, J.G. Bioquímica. 4º Edição. Porto Alegre: Artmed, 2013. 1482p.