Hendrik Lorentz

(Redirecionado de Hendrik Antoon Lorentz)
Hendrik Lorentz
Transformação de Lorentz, Força de Lorentz
Nascimento 18 de julho de 1853
Arnhem
Morte 4 de fevereiro de 1928 (74 anos)
Haarlem
Nacionalidade neerlandês
Cidadania Reino dos Países Baixos
Cônjuge Aletta Lorentz-Kaiser
Filho(s) Geertruida de Haas-Lorentz
Alma mater Universidade de Leiden
Ocupação curador, físico teórico, professor, matemático, físico, professor universitário
Prêmios Nobel prize medal.svg Nobel de Física (1902), Medalha Rumford (1908), Medalha Franklin (1917), Medalha Copley (1918)
Empregador Universidade de Leiden, Universidade de Leiden, Universidade de Leiden
Orientador(es) Pieter Rijke[1]
Orientado(s) Adriaan Fokker, Geertruida de Haas-Lorentz, Hendrika Johanna van Leeuwen, Leonard Ornstein
Instituições Universidade de Leiden
Campo(s) física
Tese 1875: Over de theorie der terugkaatsing en breking van het licht

Hendrik Antoon Lorentz (Arnhem, 18 de julho de 1853Haarlem, 4 de fevereiro de 1928) foi um físico neerlandês.

Recebeu em 1902 o Nobel de Física por seu trabalho sobre as radiações eletromagnéticas. A maior parte de seus trabalhos envolveu o eletromagnetismo. Deixou seu nome às transformações de Lorentz, que formam a base da teoria da relatividade restrita de Einstein.

Estudou em Leiden onde, em 1878, foi investido do cargo de professor de física e matemática. Em 1912 passou a dirigir o Instituto Tayler, em Haarlem. Como professor honorário em Leiden, proferia conferências semanais sobre física moderna. Foi chefe do Comitê de Cooperação Intelectual, instituído pela Liga das Nações. Em 1875 publicou seu primeiro trabalho, onde estuda a reflexão e refração da luz por dielétricos e metais. Em 1880 realizou a primeira aplicação da teoria eletromagnética de Maxwell a um meio constituído por moléculas isoladas. Tratava-se de um trabalho sobre a relação entre a densidade do meio e o índice de refração.

Walther NernstRobert GoldschmidtMax PlanckMarcel BrillouinHeinrich RubensErnest SolvayArnold SommerfeldHendrik Antoon LorentzFrederick LindemannMaurice de BroglieMartin KnudsenEmil WarburgFriedrich HasenöhrlJean Baptiste PerrinGeorges HosteletEdouard HerzenJames Hopwood JeansWilhelm WienMarie CurieErnest RutherfordHenri PoincaréHeike Kamerlingh OnnesAlbert EinsteinPaul Langevin
Primeira Conferência de Solvay, em 1911. Lorentz é o quarto sentado, a partir da esquerda

Lorentz foi o primeiro a dar uma explicação do efeito Zeeman e a predizer efeitos de polarização (que só posteriormente foi verificado na prática). O núcleo de suas investigações, no entanto, consistiu na procura de uma teoria que englobasse, em uma estrutura consistente, os fenômenos elétricos, magnéticos e luminosos, supondo como meio físico o éter em repouso, onde elétrons moviam-se ou não (relativamente a ele). Essa teoria explicou inúmeros fenômenos, mas chocou-se com o resultado negativo da experiência de Michelson-Morley, que indicava, como explicação mais plausível, o abandono da hipótese do éter.

Tentando superar esta dificuldade, Lorentz introduziu, em 1895 a concepção de tempo local que, como observou o físico Joseph Larmor, associava-se à chamada contração de Fitzgerald. Desenvolvendo seu trabalho, chegou em 1904 às transformações de Lorentz, que desempenham um papel fundamental na teoria especial da relatividade, criada por Einstein no ano seguinte.

Recebeu em 1902, junto com Pieter Zeeman, o Nobel de Física, por seus trabalhos a respeito da influência do campo magnético sobre as radiações. Seu trabalho compreendeu ainda uma série de investigações nos campos da termodinâmica e da teoria da gravitação.

Foi presidente das cinco primeiras Conferências de Solvay.

Primeiros anosEditar

Nasceu em Arnhem, filho de Frederik Lorentz (1822 - 1893) e Geertruida van Ginkel (1826 - 1861).

Lorentz e a relatividade especialEditar

Em 1905, Einstein usaria muitos dos conceitos, ferramentas matemáticas e resultados que Lorentz discutiu para escrever seu artigo intitulado " On the Electrodynamics of Moving Bodies",[2]  conhecido hoje como a teoria da relatividade especial. Como Lorentz estabeleceu os fundamentos para o trabalho de Einstein, essa teoria foi originalmente chamada de teoria de Lorentz-Einstein. [3]

Em 1906, a teoria do elétron de Lorentz recebeu um tratamento completo em suas palestras na Columbia University, publicadas sob o título The Theory of Electrons.

O aumento de massa foi a primeira previsão de Lorentz e Einstein a ser testada, mas alguns experimentos de Kaufmann pareceram mostrar um aumento de massa ligeiramente diferente; isso levou Lorentz à famosa observação de que ele era "au bout de mon latin" ("no final de meu [conhecimento de] latim" = no fim de sua inteligência)[4]  A confirmação de sua previsão teve que esperar até 1908 e mais tarde (ver experimentos Kaufmann – Bucherer – Neumann).

Lorentz publicou uma série de artigos que tratam do que chamou de "princípio da relatividade de Einstein". Por exemplo, em 1909 [5],  1910 [6] [7],  1914 [8].  Em suas palestras de 1906 publicadas com acréscimos em 1909 no livro "A teoria dos elétrons" (atualizado em 1915), ele falou afirmativamente de Teoria de Einstein: [9]

O que foi dito ficará claro que as impressões recebidas pelos dois observadores A0 e A seriam semelhantes em todos os aspectos. Seria impossível decidir qual deles se move ou para em relação ao éter, e não haveria razão para preferir os tempos e durações medidos por um àqueles determinados pelo outro, nem para dizer que qualquer um deles é na posse dos tempos "verdadeiros" ou dos comprimentos "verdadeiros". Este é um ponto que Einstein enfatizou em particular, em uma teoria na qual ele parte do que ele chama de princípio da relatividade. Não posso falar aqui das muitas aplicações altamente interessantes que Einstein fez desse princípio. Seus resultados relativos aos fenômenos eletromagnéticos e ópticos concordam principalmente com aqueles que obtivemos nas páginas anteriores, a principal diferença é que Einstein simplesmente postula o que deduzimos, com alguma dificuldade e não totalmente satisfatória, das equações fundamentais do campo eletromagnético. Ao fazer isso, ele pode certamente levar o crédito por nos fazer ver no resultado negativo de experimentos como os de Michelson, Rayleigh e Brace, não uma compensação fortuita de efeitos opostos, mas a manifestação de um princípio geral e fundamental. Seria injusto não acrescentar que, além da ousadia fascinante de seu ponto de partida, a teoria de Einstein tem outra vantagem marcante sobre a minha. Considerando que eu não fui capaz de obter para as equações referentes a eixos móveis das equações fundamentais do campo eletromagnético. Considerando que eu não fui capaz de obter para as equações referentes a eixos móveis além da ousadia fascinante de seu ponto de partida, a teoria de Einstein tem outra vantagem marcante sobre a minha. Considerando que eu não fui capaz de obter para as equações referentes a eixos móveis exatamente da mesma forma que para aqueles que se aplicam a um sistema estacionário, Einstein conseguiu isso por meio de um sistema de novas variáveis ​​ligeiramente diferentes daquelas que introduzi.

Embora Lorentz ainda sustentasse que há um éter (indetectável) no qual os relógios em repouso indicam o "tempo verdadeiro":

1909: Ainda assim, eu acho, algo também pode ser reivindicado em favor da forma em que apresentei a teoria. Não posso deixar de considerar o éter, que pode ser a sede de um campo eletromagnético com sua energia e suas vibrações, dotado de um certo grau de substancialidade, por mais diferente que seja de toda a matéria comum. [10]

1910: Contanto que haja um éter, então em todos os sistemas x, y, z, t, um é preferido pelo fato de que os eixos de coordenadas, bem como os relógios, estão parados no éter. Se ligarmos a isso a ideia (que eu abandonaria apenas com relutância) de que espaço e tempo são coisas completamente diferentes, e que existe um "tempo verdadeiro" (a simultaneidade, portanto, seria independente da localização, de acordo com a circunstância de que nós pode ter a ideia de velocidades infinitamente grandes), então pode-se ver facilmente que esse tempo verdadeiro deve ser indicado por relógios em repouso no éter. No entanto, se o princípio da relatividade tivesse validade geral na natureza, não estaríamos em posição de determinar se o sistema de referência que acabamos de usar é o preferido. Então chegamos aos mesmos resultados, como se alguém (seguindo Einstein e Minkowski) negasse a existência do éter e do tempo verdadeiro e considerasse todos os sistemas de referência igualmente válidos. Qual dessas duas maneiras de pensar alguém está seguindo, certamente pode ser deixada para o indivíduo.[11]

Lorentz também deu crédito às contribuições de Poincaré para a relatividade. [12]

Na verdade, para algumas das quantidades físicas que entram nas fórmulas, não indiquei a transformação que melhor se adequa. Isso foi feito por Poincaré e depois pelo Sr. Einstein e Minkowski. Não consegui obter a invariância exata das equações. Poincaré, ao contrário, obteve uma invariância perfeita das equações da eletrodinâmica e formulou o "postulado da relatividade", termos que foi o primeiro a empregar. Acrescentemos que, corrigindo as imperfeições de meu trabalho, ele nunca me censurou por elas.

Referências

  1. Hendrik Lorentz (em inglês) no Mathematics Genealogy Project
  2. Einstein, Albert (1905), "[ http://myweb.rz.uni-augsburg.de/~eckern/adp/history/einstein-papers/1905_17_891-921.pdf Zur Elektrodynamik bewegter Körper" (PDF)] , Annalen der Physik , 322 (10): 891–921, Bibcode : 1905AnP ... 322..891E , doi : 10.1002 / andp.19053221004. Veja também: [ http://www.fourmilab.ch/etexts/einstein/specrel/ tradução para o inglês] .
  3. Miller, Arthur I. (1981). Teoria da relatividade especial de Albert Einstein. Emergência (1905) e interpretação inicial (1905-1911). Leitura: Addison – Wesley. ISBN 978-0-201-04679-3.
  4. " [ https://web.archive.org/web/20050221211608/http://www.univ-nancy2.fr/poincare/chp/text/lorentz1.html Lorentz à Poincaré]" . Arquivado do original em 21 de fevereiro de 2005 . Retirado em 31 de março de 2017 .
  5. [ https://archive.org/details/electronstheory00lorerich Lorentz, Hendrik Antoon (1916), A teoria dos elétrons e suas aplicações aos fenômenos de luz e calor radiante; um curso de palestras ministrado na Columbia University, Nova York, em março e abril de 1906] , Nova York: Columbia University Press[ verificação falhada ]
  6. Lorentz, Hendrik Antoon (1910) [1913]. "Das Relativitätsprinzip und seine Anwendung auf einige besondere physikalische Erscheinungen". Em Blumenthal, Otto; Sommerfeld, Arnold (eds.). Das Relativitätsprinzip. Eine Sammlung von Abhandlungen. pp. 74–89. Tradução do Wikisource em inglês: [ https://en.wikisource.org/wiki/Translation:The_Principle_of_Relativity_and_its_Application_to_some_Special_Physical_Phenomena O Princípio da Relatividade e sua Aplicação a alguns Fenômenos Físicos Especiais]
  7. Lorentz, Hendrik Antoon (1931) [1910], Lectures on teórico física, vol. 3 , Londres: MacMillan
  8. Lorentz, Hendrik Antoon (1914). Das Relativitätsprinzip. Drei Vorlesungen gehalten em Teylers Stiftung zu Haarlem (1913). Leipzig e Berlin: BG Teubner.
  9. [ https://archive.org/details/electronstheory00lorerich Lorentz, Hendrik Antoon (1916), A teoria dos elétrons e suas aplicações aos fenômenos de luz e calor radiante; um curso de palestras ministrado na Columbia University, Nova York, em março e abril de 1906] , Nova York: Columbia University Press[ verificação falhada ]
  10. [ https://archive.org/details/electronstheory00lorerich Lorentz, Hendrik Antoon (1916), A teoria dos elétrons e suas aplicações aos fenômenos de luz e calor radiante; um curso de palestras ministrado na Columbia University, Nova York, em março e abril de 1906] , Nova York: Columbia University Press[ verificação falhada ]
  11. Lorentz, Hendrik Antoon (1910) [1913]. "Das Relativitätsprinzip und seine Anwendung auf einige besondere physikalische Erscheinungen". Em Blumenthal, Otto; Sommerfeld, Arnold (eds.). Das Relativitätsprinzip. Eine Sammlung von Abhandlungen. pp. 74–89. Tradução do Wikisource em inglês: [ https://en.wikisource.org/wiki/Translation:The_Principle_of_Relativity_and_its_Application_to_some_Special_Physical_Phenomena O Princípio da Relatividade e sua Aplicação a alguns Fenômenos Físicos Especiais]
  12. Lorentz, Hendrik Antoon (1921) [1914], "Deux Mémoires de Henri Poincaré sur la Physique Mathématique" , Acta Mathematica , 38 (1): 293-308, doi : 10.1007 / BF02392073 Tradução do Wikisource em inglês: Dois Artigos de Henri Poincaré em Física Matemática

Ver tambémEditar

Ligações externasEditar


Precedido por
Wilhelm Conrad Röntgen
Nobel de Física
1902
com Pieter Zeeman
Sucedido por
Antoine Henri Becquerel, Pierre Curie e Marie Curie
Precedido por
Hugh Longbourne Callendar
Medalha Rumford
1908
Sucedido por
Heinrich Rubens
Precedido por
John Joseph Carty e Theodore William Richards
Medalha Franklin
1917
com David Watson Taylor
Sucedido por
Guglielmo Marconi e Thomas Corwin Mendenhall
Precedido por
Émile Roux
Medalha Copley
1918
Sucedido por
William Bayliss


Outros projetos Wikimedia também contêm material sobre este tema:
  Imagens e media no Commons