Aritmética

Ramo da matemática que estuda as operações numéricas.

A aritmética (da palavra grega ἀριθμός, arithmós,[Nota 1] "número") é o ramo mais elementar e antigo da matemática, lida com as operações possíveis entre os números; é utilizada por quase todo ser humano: seja em tarefas cotidianas, seja em tarefas científicas ou negociais. As quatro operações matemáticas mais elementares (adição, subtração, multiplicação e divisão) são a aritmética elementar.

Tabela de adição (Tabela de Dupla Entrada em português europeu)

Por vezes, matemáticos profissionais utilizam o termo "aritmética superior"[1] para referirem-se àlgum resultado mais avançado relacionado à teoria dos números; contudo, da aritmética elementar, isso não é parte.

HistóriaEditar

 Ver artigo principal: História da aritmética
 
Calandri aritméticos da Idade Média

A pré-história da aritmética é limitada a um pequeno número de artefatos que podem indicar a concepção de adição e subtração; o mais conhecido desses é o osso de Ishango da África Central, datado dum momento entre 20.000 e 18.000 a.C., embora sua interpretação seja contestada.[2]

Os primeiros registros escritos indicam que os egípcios e babilônios usavam todas as operações aritméticas elementares tão cedo quanto 2000 a.C. Esses artefatos nem sempre revelam o processo específico utilizado para resolver problemas, mas as características do sistema de numeração em particular influenciaram fortemente a complexidade dos métodos. O sistema de hieróglifos para numerais egípcios, como os numerais romanos posteriores, descendem de marcas de contagem.[3] Em ambos os casos, esta origem resultou em valores que usavam uma base decimal, mas não incluíam a notação posicional. Cálculos complexos com algarismos romanos exigiram o auxílio de uma placa de contagem ou o ábaco romano para obter os resultados.[4]

Sistemas de numeração mais antigos, que tinham notação posicional, não eram decimais: um exemplo disso é o sistema de base 60, sexagesimal, dos babilônios.[3][5] Os Maias, mais à frente, usaram o sistema de (base 20), que definiu o sistema de numeração Maia. Devido a este conceito lugar-valor, a capacidade de reutilizar os mesmos dígitos para diferentes valores contribuíram para métodos mais simples e mais eficientes de cálculo.

O desenvolvimento histórico contínuo da aritmética moderna começa com a civilização helenística da Grécia antiga, embora se tenha originado muito mais tarde do que os exemplos dos babilônios e os do Egito.[6] Antes das obras de Euclides (c. 300 a.C.), os estudos gregos em matemática sobrepunham convicções filosóficas e místicas, e.g. Nicômaco resumiu o ponto de vista da abordagem aos números dos primeiros pitagóricos e suas relações uns com os outros em sua Arithmetike eisagoge (Introdução à aritmética).

Os numerais gregos derivaram-se a partir do sistema hierático egípcio, também carecendo de notação posicional, e, portanto, com a mesma complexidade imposta sobre as operações básicas de aritmética. O matemático antigo Arquimedes dedicou toda a sua obra Αρχιμήδης Ψαµµίτης (Archimedes Psammites - O calculista de areia) apenas para a elaboração de uma notação para um certo inteiro grande.

O desenvolvimento gradual dos algarismos indo-arábicos de forma independente criou o conceito de lugar de valor e notação posicional, que combinou os métodos mais simples para cálculos com a base decimal e o uso de um dígito representando o zero. Isto permitiu que o sistema representasse de forma consistente ambos inteiros grandes e pequenos. Esta abordagem, eventualmente substituiu todos os outros sistemas. No início do século 6 dC, o matemático indiano Aryabhata incorporou uma versão existente do sistema em seu trabalho, e o experimentou com notações diferentes. No século 7, Brahmagupta estabeleceu o uso de zero como um número separado e determinou os resultados para multiplicação, divisão, adição e subtração de zero por todos os outros números, com exceção do resultado da divisão por zero.[7] Seu contemporâneo, o bispo siríaco Severus Sebokht descreveu a excelência deste sistema como "... métodos valiosos de cálculo que ultrapassam a descrição". Os árabes também aprenderam este novo método e chamaram-lhe hesab.

Embora o Codex Vigilanus tenha descrito uma forma primitiva de algarismos arábicos (omitindo o zero) em 976 dC, Fibonacci foi o principal responsável por espalhar a sua utilização em toda a Europa após a publicação do seu livro Liber Abaci em 1202. Ele considerou a importância desta "nova" representação dos números, que ele intitulou o "Método dos índios" (em latim Indorum Modus), tão fundamental, que todos os fundamentos matemáticos relacionados, incluindo os resultados de Pitágoras e o algorism descrevendo os métodos para a realização de cálculos reais, eram "quase um erro", em comparação.

Na Idade Média, a aritmética era uma das sete artes liberais ensinadas nas universidades.

O florescimento da álgebra no mundo medieval islâmico e na Europa renascentista, foi uma consequência da simplificação enorme de computação através de notação decimal.

Vários tipos de ferramentas existem para auxiliar em cálculos numéricos. Exemplos incluem réguas de cálculo (para a multiplicação, divisão e trigonometria) e nomogramas, além da calculadora eletrônica.

Operações AritméticasEditar

 
O Stepped Reckoner de Leibniz foi a primeira calculadora que podia realizar as quatro operações aritméticas.

As operações aritméticas tradicionais são a adição, a subtração, a multiplicação e a divisão, embora operações mais avançadas (tais como as manipulações de porcentagens, raiz quadrada, exponenciação e funções logarítmicas) também sejam por vezes incluídas neste ramo. A aritmética desenrola-se em obediência a uma ordem de operações.

A aritmética abrange o estudo de algoritmos manuais para a realização de operações com os números naturais, inteiros, racionais (na forma de frações) e reais. Tais operações, no entanto, podem ser realizadas com o uso de ferramentas como calculadoras, computadores ou o ábaco, o que não lhes tira o carácter aritmética.

Teoria dos NúmerosEditar

O termo aritmética também é usado em referência à teoria dos números. Isto inclui as propriedades dos inteiros relacionados com a primalidade, a divisibilidade[8] e a solução de equações em inteiros, bem como a pesquisa moderna que tem surgido deste estudo. É neste contexto que se pode encontrar coisas como o teorema fundamental da aritmética e funções aritméticas. O livro A Course in Arithmetic de Jean-Pierre Serre reflete esse uso,[9] assim como frases como a aritmética de primeira ordem ou geometria algébrica aritmética.

Aritmética na EducaçãoEditar

O Ensino primário em matemática, muitas vezes coloca um forte foco em algoritmos para a aritmética de números naturais, inteiros, frações, e decimais (usando o sistema local de valor decimal). Este estudo é por vezes conhecido como algorism.

O aparecimento de dificuldades e a desmotivação destes algoritmos há muito levou os educadores a questionar este currículo, defendendo o ensino precoce das ideias matemáticas mais centrais e intuitivas. Um movimento notável neste sentido foi a Matemática Moderna dos anos 1960 e 1970, que tentou ensinar aritmética, no espírito de desenvolvimento axiomático da teoria dos conjuntos, um eco da tendência prevalecente na matemática superior.[10]

NotasEditar

  1. O termo 'aritmética' (português) provém do grego 'arithmós', que se refere aos números, enquanto o prefixo 'ar_' implica reunir, isto é, aritmética é a ciência que reúne - soma, subtrai, multiplica, divide - números. Trata-se, portanto, da parte da matemática que estuda as operações numéricas e, por extensão de sentido, significa tudo que pressupõe um cálculo qualquer.

Referências

  1. Davenport, Harold (1999). The Higher Arithmetic: An Introduction to the Theory of Numbers 7ª ed. Cambridge, UK: Cambridge University Press. ISBN 0521634466 
  2. Rudman, Peter Strom (2007). How Mathematics Happened: The First 50,000 Years. Amherst, New York: Prometheus Books. p. 64. ISBN 978-1591024774 
  3. a b Ifrah, Georges. História Universal dos Algarismos. A Inteligência dos Homens Contada pelos Números e pelo Cálculo. 1. Rio de Janeiro: Nova Fronteira. p. 162-180;346-354;404-409. 735 páginas. ISBN 85-209-0841-1 
  4. Gonick, Larry (1984). Introdução Ilustrada à Computação. São Paulo: Harper & Row do Brasil. p. 34-35. 242 páginas 
  5. Souza, Júlio Cesar de Mello e (Malba Tahan). Matemática Divertida e Curiosa 4ª ed. Rio de Janeiro: Record. p. 22-23. 158 páginas. ISBN 85-01-03375-8 
  6. Karlson, Paul (1961). «Os Gregos». A Magia dos Números. Porto Alegre: Globo. p. 80-154. 608 páginas 
  7. Plofker, Kim (autor do capítulo);Katz, Victor J. (editor) (2007). «Mathematics in India». The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook. New Jersey: Princeton University Press. 712 páginas. ISBN 978-0-69111485-9 
  8. Alencar Filho, Edgard de (1992). Teoria Elementar dos Números 3ª ed. São Paulo: Nobel. p. 68-83;116-136. 386 páginas. ISBN 85-213-0040-9 
  9. Serre, Jean-Pierre (1973). A Course in Arithmetic (em inglês). New York: Springer. 115 páginas. ISBN 978-0-38790040-7 
  10. Navarro, Joaquin (1979). A Nova Matemática. Rio de Janeiro: Salvat. p. 21-62;84. 143 páginas. ISBN 84-401-0534-7 

Ver tambémEditar