Abrir menu principal

Função de Möbius

Question book-4.svg
Esta página cita fontes confiáveis e independentes, mas que não cobrem todo o conteúdo (desde Abril de 2013). Ajude a inserir referências. Conteúdo não verificável poderá ser removido.—Encontre fontes: Google (notícias, livros e acadêmico)

A clássica função de Möbius μ(n) é uma função multiplicativa na Teoria dos Números e Análise Combinatória. Tem esse nome em homenagem ao matemático alemão August Ferdinand Möbius, que foi o primeiro a defini-la em 1831.

DefiniçãoEditar

 
A função de Möbius.

Denotada por μ(n), a função de Möbius possui em seu domínio de definição todos os números naturais e sua imagem possui três elementos: -1, 0, e 1. Uma maneira simples de regrar a relação entre os elementos do domínio e da imagem é a seguinte:

  • μ(n) = 0 se n tem como divisor um outro número natural ao quadrado
  • μ(n) = 1 se n não tem como divisor um outro número natural ao quadrado e é decomposto em uma quantidade par de números primos
  • μ(n) = -1 se n não tem como divisor um outro número natural ao quadrado e é decomposto em uma quantidade ímpar de números primos

Ainda define-se μ(1) = 1. O valor μ(0) é geralmente deixado indefinido. O software Maple define-o como sendo -1. Assim, pode-se condensar a definição da função por meio do regramento a seguir.

Dado       ou       (vide Teorema Fundamental da Aritmética), tem-se       tal que

 

Conforme a definição dada acima, para estabelecer o valor de μ(n) faz-se necessário conhecer a fatoração de n, o que por vezes dificulta muito o cálculo da função. Contudo há uma forma alternativa de definição de μ(n), pela qual não se precisa conhecer os fatores primos de n, que é estabelecida por meio da expressão dada a seguir[1]:

 

em que (k,n) = mdc(k,n), de forma que existem tantos k quanto φ(n), i é a unidade imaginária do corpo dos complexos, a constante e = 2,718281... é o número de Euler e π representa o número irracional 3,141592.... Contudo, a complexidade computacional para esse cálculo (que se fundamenta na determinação de raízes da unidade) resulta em um custo semelhante ao do cálculo do produto de Euler.

PropriedadesEditar

Propriedade 1Editar

 

De fato, se n = 1, o resultado é imediato. Para o caso de n > 1, uma vez que μ é multiplicativa, é suficiente tomar n = pk, em que p é um primo qualquer. Como todos os divisores de pk estão no conjunto {1, p, ..., pk}, então

 

Propriedade 2Editar

Se   com Re(s) > 1 então

 

A demonstração de tal igualdade parte da função zeta de riemann, dada por  

Propriedade 3Editar

Um enunciado equivalente à hipótese de Riemann (localização dos zeros não triviais da função meromorfa  ) é o seguinte: para cada ε > 0, tem-se

 

Referências

  1. Hardy, G. H.; Wright, E. M. An Introduction to the Theory of Numbers. Oxford: Oxford University Press, 1980, 5 ed., ISBN 978-0-19-853171-5

Ligações externasEditar

Ver tambémEditar