Lista de palestrantes plenários do Congresso Internacional de Matemáticos

artigo de lista da Wikimedia

A lista de palestrantes plenários do Congresso Internacional de Matemáticos os palestrantes plenários do Congresso Internacional de Matemáticos.

Para as palestras em língua russa o título da palestra é dado de acordo com a tradução nos volumes dos congressos.

1897 ZuriqueEditar

  • Henri Poincaré: Sur les rapports de l’analyse pure et de la physique mathématique
  • Adolf Hurwitz: Über die Entwicklung der allgemeinen Theorie der analytischen Funktionen in neuerer Zeit
  • Giuseppe Peano: Logica matematica
  • Felix Klein: Zur Frage des höheren mathematischen Unterrichts

1900 ParisEditar

1904 HeidelbergEditar

1908 RomaEditar

1912 CambridgeEditar

1920 EstrasburgoEditar

1924 TorontoEditar

1928 BolonhaEditar

1932 ZuriqueEditar

  • James Waddell Alexander: Some Problems in Topology.
  • Sergei Natanovich Bernstein: Sur les liaisons entre quantités aléatoires.
  • Ludwig Bieberbach: Operationsbereiche von Funktionen.
  • Harald Bohr: Fastperiodische Funktionen einer komplexen Veränderlichen.
  • Constantin Carathéodory: Über die analytischen Abbildungen durch Funktionen mehrerer Veränderlicher.
  • Torsten Carleman: Sur la théorie des équations intégrales linéaires et ses applications.
  • Élie Cartan: Sur les espaces riemanniens symétriques.
  • Rudolf Fueter: Idealtheorie und Funktionentheorie.
  • Gaston Julia: Essai sur le développement de la théorie des fonctions de variables complexes.
  • Karl Menger: Neuere Methoden und Probleme der Geometrie.
  • Marston Morse: The Calculus of Variations in the Large.
  • Rolf Nevanlinna: Über die Riemannsche Fläche einer analytischen Funktion.
  • Emmy Noether: Hyperkomplexe Systeme in ihren Beziehungen zur kommutativen Algebra und zur Zahlentheorie.
  • Wolfgang Pauli: Mathematische Methoden der Quantenmechanik.
  • Frigyes Riesz: Sur l’existence de la dérivée des fonctions d’une variable réelle et des fonctions d’intervalle.
  • Francesco Severi: La théorie générale des fonctions analytiques de plusieurs variables et la géométrie algébrique.
  • Waclaw Sierpinski: Sur les ensembles de points qu’on sait définir effectivement.
  • Julius Stenzel: Anschauung und Denken in der klassischen Theorie der griechischen Mathematik.
  • Nikolai Chebotaryov: Die Aufgaben der modernen Galoisschen Theorie
  • Georges Valiron: Le théorème de Borel-Julia dans la théorie des fonctions méromorphes.
  • Rolin Wavre: L’aspect analytique du problème des figures planétaires.

1936 OsloEditar

1950 CambridgeEditar

1954 AmsterdamEditar

1958 EdimburgoEditar

1962 EstocolmoEditar

1966 MoscouEditar

1970 NiceEditar

1974 VancouverEditar

1978 HelsinqueEditar

1983 VarsóviaEditar

  • Vladimir Arnold: Singularities of Ray Systems.
  • Paul Erdős: Extremal Problems in Number Theory, Combinatorics, and Geometry.
  • Wendell Fleming: Optimal Control of Markov Processes.
  • Christopher Hooley: Some Recent Advances in Analytical Number Theory.
  • Wu-Chung Hsiang: Geometric Applications of Algebraic K-Theory.
  • Peter Lax: Problems Solved and Unsolved Concerning Linear and Non-Linear Partial Differential Equations.
  • Victor Pavlovich Maslov: Non-Standard Characteristics in Asymptotical Problems.
  • Barry Mazur: Modular Curves and Arithmetic.
  • Robert MacPherson: Global Questions in the Topology of Singular Spaces.
  • Aleksander Pełczyński: Structural Theory of Branch Spaces and Its Interplay with Analysis and Probability.
  • Gilles Pisier: Finite rank projections on Banach spaces and a conjecture of Grothendieck
  • David Ruelle: Turbulent Dynamical Systems.
  • Mikio Satō: Monodromy Theory and Holonomic Quantum Fields – a New Link between Mathematics and Theoretical Physics.
  • Yum-Tong Siu: Some Recent Developments in Complex Differential Geometry.

1986 BerkeleyEditar

1990 QuiotoEditar

  • Spencer Bloch: Algebraic K-Theory, Motives, and Algebraic Cycles.
  • Stephen Cook: Computational Complexity of Higher Type Functions.
  • Boris Feigin: Conformal Field Theory and Cohomologies of the Lie Algebra of Holomorphic Vector Fields on a Complex Curve.
  • Andreas Floer: Elliptic Methods in Variational Problems.
  • Yasutaka Ihara: Braids, Galois Groups, and Some Arithmetic Functions.
  • Vaughan Jones: Von Neumann Algebras in Mathematics and Physics (recebeu a Medalha Fields no mesmo ano)
  • László Lovász: Geometric Algorithms and Algorithmic Geometry.
  • George Lusztig: Intersection Cohomology Methods in Representation Theory.
  • Andrew Majda: The Interaction on Non-Linear Analysis and Modern Applied Mathematics.
  • Grigory Margulis: Dynamical and Ergodic Properties of Subgroup Actions on Homogeneous Spaces with Applications to Number Theory (recebeu a Medalha Fields de 1978)
  • Richard Burt Melrose: Pseudodifferential Operators, Corners and Singular Limits.
  • Shigefumi Mori: Birational Classification of Algebraic Threefolds (recebeu a Medalha Fields no mesmo ano)
  • Yakov Sinai: Hyperbolic Billiards.
  • Karen Uhlenbeck: Applications of Non-Linear Analysis in Topology.
  • Alexander Varchenko: Multidimensional Hypergeometric Functions in Conformal Field Theory, Algebraic K-Theory, Algebraic Geometry.

1994 ZuriqueEditar

1998 BerlimEditar

2002 PequimEditar

2006 MadridEditar

2010 HyderabadEditar

2014 SeulEditar

2018 Rio de JaneiroEditar

Ligações externasEditar

Ver tambémEditar