Lista de palestrantes plenários do Congresso Internacional de Matemáticos

artigo de lista da Wikimedia

A lista de palestrantes plenários do Congresso Internacional de Matemáticos os palestrantes plenários do Congresso Internacional de Matemáticos.

Para as palestras em língua russa o título da palestra é dado de acordo com a tradução nos volumes dos congressos.

1897 Zurique

editar
  • Henri Poincaré: Sur les rapports de l’analyse pure et de la physique mathématique
  • Adolf Hurwitz: Über die Entwicklung der allgemeinen Theorie der analytischen Funktionen in neuerer Zeit
  • Giuseppe Peano: Logica matematica
  • Felix Klein: Zur Frage des höheren mathematischen Unterrichts

1900 Paris

editar

1904 Heidelberg

editar

1908 Roma

editar

1912 Cambridge

editar

1920 Estrasburgo

editar

1924 Toronto

editar

1928 Bolonha

editar

1932 Zurique

editar
  • James Waddell Alexander: Some Problems in Topology.
  • Sergei Natanovich Bernstein: Sur les liaisons entre quantités aléatoires.
  • Ludwig Bieberbach: Operationsbereiche von Funktionen.
  • Harald Bohr: Fastperiodische Funktionen einer komplexen Veränderlichen.
  • Constantin Carathéodory: Über die analytischen Abbildungen durch Funktionen mehrerer Veränderlicher.
  • Torsten Carleman: Sur la théorie des équations intégrales linéaires et ses applications.
  • Élie Cartan: Sur les espaces riemanniens symétriques.
  • Rudolf Fueter: Idealtheorie und Funktionentheorie.
  • Gaston Julia: Essai sur le développement de la théorie des fonctions de variables complexes.
  • Karl Menger: Neuere Methoden und Probleme der Geometrie.
  • Marston Morse: The Calculus of Variations in the Large.
  • Rolf Nevanlinna: Über die Riemannsche Fläche einer analytischen Funktion.
  • Emmy Noether: Hyperkomplexe Systeme in ihren Beziehungen zur kommutativen Algebra und zur Zahlentheorie.
  • Wolfgang Pauli: Mathematische Methoden der Quantenmechanik.
  • Frigyes Riesz: Sur l’existence de la dérivée des fonctions d’une variable réelle et des fonctions d’intervalle.
  • Francesco Severi: La théorie générale des fonctions analytiques de plusieurs variables et la géométrie algébrique.
  • Waclaw Sierpinski: Sur les ensembles de points qu’on sait définir effectivement.
  • Julius Stenzel: Anschauung und Denken in der klassischen Theorie der griechischen Mathematik.
  • Nikolai Chebotaryov: Die Aufgaben der modernen Galoisschen Theorie
  • Georges Valiron: Le théorème de Borel-Julia dans la théorie des fonctions méromorphes.
  • Rolin Wavre: L’aspect analytique du problème des figures planétaires.

1936 Oslo

editar

1950 Cambridge

editar

1954 Amsterdam

editar

1958 Edimburgo

editar

1962 Estocolmo

editar

1966 Moscou

editar

1970 Nice

editar

1974 Vancouver

editar

1978 Helsinque

editar

1983 Varsóvia

editar
  • Vladimir Arnold: Singularities of Ray Systems.
  • Paul Erdős: Extremal Problems in Number Theory, Combinatorics, and Geometry.
  • Wendell Fleming: Optimal Control of Markov Processes.
  • Christopher Hooley: Some Recent Advances in Analytical Number Theory.
  • Wu-Chung Hsiang: Geometric Applications of Algebraic K-Theory.
  • Peter Lax: Problems Solved and Unsolved Concerning Linear and Non-Linear Partial Differential Equations.
  • Victor Pavlovich Maslov: Non-Standard Characteristics in Asymptotical Problems.
  • Barry Mazur: Modular Curves and Arithmetic.
  • Robert MacPherson: Global Questions in the Topology of Singular Spaces.
  • Aleksander Pełczyński: Structural Theory of Branch Spaces and Its Interplay with Analysis and Probability.
  • Gilles Pisier: Finite rank projections on Banach spaces and a conjecture of Grothendieck
  • David Ruelle: Turbulent Dynamical Systems.
  • Mikio Satō: Monodromy Theory and Holonomic Quantum Fields – a New Link between Mathematics and Theoretical Physics.
  • Yum-Tong Siu: Some Recent Developments in Complex Differential Geometry.

1986 Berkeley

editar

1990 Quioto

editar
  • Spencer Bloch: Algebraic K-Theory, Motives, and Algebraic Cycles.
  • Stephen Cook: Computational Complexity of Higher Type Functions.
  • Boris Feigin: Conformal Field Theory and Cohomologies of the Lie Algebra of Holomorphic Vector Fields on a Complex Curve.
  • Andreas Floer: Elliptic Methods in Variational Problems.
  • Yasutaka Ihara: Braids, Galois Groups, and Some Arithmetic Functions.
  • Vaughan Jones: Von Neumann Algebras in Mathematics and Physics (recebeu a Medalha Fields no mesmo ano)
  • László Lovász: Geometric Algorithms and Algorithmic Geometry.
  • George Lusztig: Intersection Cohomology Methods in Representation Theory.
  • Andrew Majda: The Interaction on Non-Linear Analysis and Modern Applied Mathematics.
  • Grigory Margulis: Dynamical and Ergodic Properties of Subgroup Actions on Homogeneous Spaces with Applications to Number Theory (recebeu a Medalha Fields de 1978)
  • Richard Burt Melrose: Pseudodifferential Operators, Corners and Singular Limits.
  • Shigefumi Mori: Birational Classification of Algebraic Threefolds (recebeu a Medalha Fields no mesmo ano)
  • Yakov Sinai: Hyperbolic Billiards.
  • Karen Uhlenbeck: Applications of Non-Linear Analysis in Topology.
  • Alexander Varchenko: Multidimensional Hypergeometric Functions in Conformal Field Theory, Algebraic K-Theory, Algebraic Geometry.

1994 Zurique

editar

1998 Berlim

editar

2002 Pequim

editar

2006 Madrid

editar

2010 Hyderabad

editar

2014 Seul

editar

2018 Rio de Janeiro

editar

2022 São Petersburgo

editar

Ligações externas

editar

Ver também

editar